
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Final Review

Overview
•General course review
•What we have accomplished

•Final exam:
• Problem/topic distribution
• Preparation

•Final remarks

CS-3510: Design and Analysis of Algorithms | Summer 2022 2

Roadmap

3CS-3510: Design and Analysis of Algorithms | Summer 2022

We w
ere

here
!

📆
May 17, 2022

Roadmap

4CS-3510: Design and Analysis of Algorithms | Summer 2022
We are Finally here!July 24, 2022

Summary
Design and Analysis of Algorithms

• What?
• Algorithms
• Algorithmic paradigms; design and correctness
• Performance analysis

• Why?
• Fundamental to all areas of computer science

• Operating systems, Networks and distributed systems, Machine learning, Data science, Numerical
computation, Cryptography, Computational biology, etc.

• Inseparable part of every technical interview
• Internship, Part-time, Full-time

• Useful and Fun!
• Problem solving skills
• Competitive programming, Hackathons, etc.

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Final Exam
•Date: Thursday, July 28, 2022
• Time: 03:00 pm – 05:00 pm
• Location: Klaus 2443

• Closed book; No calculator
•One page sheet of notes
• Letter size
• Both sides
• Typed or hand-written

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Time Complexity
• Asymptotic Order of Growth
• It is easier to talk about the lower bound and upper bound of the running time.

• To practically deal with time complexity analysis, we use asymptotic notations.

• The asymptotic growth of a function (in this case T(n)) is specified using Θ, Ο,
and Ω notations.

• Asymptotic means for “very large” input size, as n grows without bound or
“asymptotically”.

9CS-3510: Design and Analysis of Algorithms | Summer 2022

Fin
al

Rev
iew

Time Complexity
• Asymptotic Order of Growth
• In general, the asymptotic notations define bounds on the growth of a function.

Informally, a function 𝑓 𝑛 is:

• Ω(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic lower bound for 𝑓 𝑛

• Ο(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic upper bound for 𝑓 𝑛

• Θ(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic tight bound for 𝑓 𝑛

10CS-3510: Design and Analysis of Algorithms | Summer 2022

Fin
al

Rev
iew

Time Complexity
• Asymptotic Order of Growth (Formal definition):
• Big Omega (lower bound):

f(n) is Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• Big O (upper bound):
f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• Big Theta (tight bound):
f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
• Note: f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n))

11CS-3510: Design and Analysis of Algorithms | Summer 2022

Fin
al

Rev
iew

Time Complexity
• Big O Notation Properties

• So, we can ignore the lower terms and constants:

• Ex. f = 2n3 + 4n2 -5n + 1∈ O(n3)
• Ex. f = 4n5 ∈ O(n5)

12CS-3510: Design and Analysis of Algorithms | Summer 2022

Reflexivity f is O(f)
Constants If f is O(g) and c > 0, then cf is O(g)
Products If f1 is O(g1) and f2 is O(g2), then f1 f2 is O(g1 g2)
Sums
(Additivity)

If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2})
Ex. If f1 ∈ O(n2) and f2 ∈ O(n4). Then, f1 + f2 ∈ O(n4)

Transitivity If f is O(g) and g is O(h), then f is O(h)

Fin
al

Rev
iew

Time Complexity
• Asymptotic Bounds for Some Common Functions

13CS-3510: Design and Analysis of Algorithms | Summer 2022

Polynomials f(n) = a0 + a1n + ... + adnd is Θ(nd) and thus, O(nd) if ad>0.

Logarithms loga n is Θ(logb n) for every a>1 and b>1.
Note: O(loga n) = O(logb n) (Recall logb n = logb a × loga n)

Logarithms vs polynomials loga n is O(nd) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials nd is O(rn) for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.

Fin
al

Rev
iew

Asymptotic Order of Growth Hierarchy
𝑛!
𝑛!
3!
2!
𝑛", 2𝑛", 𝑛 − 1000 ", 𝑛" − 𝑛#

𝑛#, 2𝑛#, −1000𝑛# + 𝑛, 100𝑛# + log 𝑛
𝑛 log 𝑛
𝑛, 2𝑛, 1000𝑛, 10$%𝑛 + 1000
𝑛

log" 𝑛
log# 𝑛
log 𝑛 , log# 𝑛 , log" 𝑛 , log$%%%% 𝑛

log log 𝑛
1, 10, 1000, 𝐶

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔

𝑓(𝑛)

𝑓(𝑛)

𝑓 ∈ Ω 𝑔

𝑔(𝑛)

𝑓 𝑛 𝑓 ∈ Θ 𝑔 𝑔(𝑛)

Fin
al

Rev
iew

Asymptotic Order of Growth Hierarchy
𝑛!
𝑛!
3!
2!
𝑛", 2𝑛", 𝑛 − 1000 ", 𝑛" − 𝑛#

𝑛#, 2𝑛#, −1000𝑛# + 𝑛, 100𝑛# + log 𝑛
𝑛 log 𝑛
𝑛, 2𝑛, 1000𝑛, 10$%𝑛 + 1000
𝑛

log" 𝑛
log# 𝑛
log 𝑛 , log# 𝑛 , log" 𝑛 , log$%%%% 𝑛

log log 𝑛
1, 10, 1000, 𝐶

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔

𝑓(𝑛)

𝑓(𝑛)

𝑓 ∈ Ω 𝑔

𝑔(𝑛)

𝑓 𝑛 𝑓 ∈ Θ 𝑔 𝑔(𝑛)

Fin
al

Rev
iew Type of questions for this part

in the Final Exam:
- Short answers
- Definition
- True/False questions

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Divide-and-Conquer (D&C)
• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Fin
al

Rev
iew

Divide-and-Conquer (D&C)
• Discussed examples:
• Binary-search

à Variant/applications of binary search
• Merge-sort

à Variant/applications of merge-sort
• Quick-sort

à Variant/applications of quick-sort
• Matrix multiplication

• Closest pair of points

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:
- Variant (Design) /applications /parts of

binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case
- Time and space complexity

Fin
al

Rev
iew

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛&'(!) , if 𝑎 > 𝑏* (case 1)
Θ 𝑛* log 𝑛 , if 𝑎 = 𝑏* (case 2)
Θ 𝑛* , if 𝑎 < 𝑏* (case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇 !

#
+ 2!

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Application of Master Theorem
- The recurrence relation is

given à direct
- Dominated by

root/leaves/evenly
distributed

- An algorithm (D&C) is
given, you need to find the
recurrence first. Then, apply
the Master Theorem à
indirect

- (Very similar to Exam-1)

Fin
al

Rev
iew

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Fin
al

Rev
iew

Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler

subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Fin
al

Rev
iew

DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Type of questions in Final Exam:
- Design a DP algorithm (1D or 2D)
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity
- Very similar to the example solved in

class and the assignments.

Fin
al

Rev
iew

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

What about the
Greedy
algorithms?

Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Fin
al

Rev
iew

Greedy Choice Property
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution

by making locally optimal choices.
• In other words, when we are considering which choice to make, we

make the choice that looks best in the current problem, without
considering results from subproblems.
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the

subproblem that remains.
• Makes its first choice before solving any subproblems.

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

Fin
al

Rev
iew

Difference with Dynamic Programming
• Dynamic programming:
• Make a choice at each step, but the choice usually depends on the solutions to

subproblems.
• Consequently, we typically solve dynamic-programming problems in a

bottom-up manner, progressing from smaller subproblems to larger
subproblems.
• Even in top-down approach, we use memoizing. So, even though the code

works top down, we still solve the subproblems before making a choice.
• Solves the subproblems before making the first choice.

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Fin
al

Rev
iew

Greedy Algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

problem

subproblem

Subsub
problem

Subsub
problem

Divide-and-Conquer Dynamic Programming Greedy Approach

problem

subproblem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

problem

subproblem

Subsub
problem

Optimal substructure
But only one subproblem

Fin
al

Rev
iew

Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal

substructure.

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

problem

subproblem

Subsub
problem

Fin
al

Rev
iew

Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal

substructure.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

problem

subproblem

Subsub
problem

Fin
al

Rev
iew

Type of questions in Final Exam:
- “Perhaps” T/F, short answer, or

definition

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest

path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

Graph Algorithms
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Graph Definitions and Terminology: Summary
• Paths and connectivity
• Connected graph, connected component
• Cycle
• DAG
• Bipartiteness
• Trees
• …

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Type of Questions in Final Exam:
- Short answers
- Definition
- True/False questions

Fin
al

Rev
iew

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Fin
al

Rev
iew

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

A

E
B

C
D

G

F

distance from source
parent

white := unvisited node

gray := visited node

black := visited & all
unvisited neighbors
added to the queue

Fin
al

Rev
iew

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

A

E
B

C

D
G

F

Fin
al

Rev
iew

Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|)

Fin
al

Rev
iew

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it
searches the graph.

Ø We can print out the vertices on a shortest
path from s to v, using the BFS tree

Ø We only have one distance measure
(timestamp), denoted by d, assigned to each
node, i.e., the time that a node visited for
the first (and last) time.

Ø The predecessor subgraph of a depth-first
search forms a depth-first forest
comprising several depth-first trees.

Ø DFS timestamps each node with two
numbers;
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.

Fin
al

Rev
iew

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Type of Questions in Final Exam:
- Short answers /Definition/ True/False
- Running BFS/DFS on a given graph (show your steps)
- BFS/DFS trees, discovery/finishing times, …

Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Fin
al

Rev
iew

Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Fin
al

Rev
iew

Type of Questions in Final Exam for graph-related problems:
- Short answers /Definition/ True/False
- Designing (explaining) an algorithm for a graph-related problem

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸* such that 𝐸* ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Fin
al

Rev
iew

Generic-MST
• Notes
• The set A is always acyclic.
• At any point G+ = (𝑉, 𝐴) is a forest
• At first when 𝐴 = 𝜙, we have |V| trees

in the forest G+, each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4) runs for |V|-1 times to find the edges required to form

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Fin
al

Rev
iew

MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Fin
al

Rev
iew

MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree
of G.

• Tree T spans the graph G

• Minimum spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(E log V)

Prim Greedy Priority Queue (Binary Min-Heap) O(E log V)

Fin
al

Rev
iew

MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree
of G.

• Tree T spans the graph G

• Minimum spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(E log V)

Prim Greedy Priority Queue (Binary Min-Heap) O(E log V)

Type of Questions in Final Exam:
- Short answers /Definition/ True/False
- Running Kruskal’s/Prim’s algorithms on a given graph (show your steps)
- Proving some properties of minimum spanning trees.

- Proof by contradiction (assume the given statement is not correct,
then show this assumption will cause some contradictions à Thus,
the given statement is true.)

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST,

shortest path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Shortest Paths (Weighted Graphs)
• Problem description
• Given graph G = (V, E), and a weight function w: E → ℝ

• Weight of a path p=[𝑣2, 𝑣3, … , 𝑣4] = ∑edge_weights on path p

= ∑5634 𝑤(𝑣573, 𝑣5)

• Shortest-path weight from 𝑢 ↝ 𝑣 = 𝛿 𝑢, 𝑣 =
min
"($↝&)

𝑤 𝑝 , if there exists a path u ↝ v

∞, otherwise

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Fin
al

Rev
iew

Shortest Paths (Weighted Graphs)
• Example
• Weighted, directed graph
• Shortest path from source s to other vertices

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

S

t

y

x

z

Shortest path 1 Shortest path 2

Shortest path does not have to be unique.

Fin
al

Rev
iew

Shortest Paths (Weighted Graphs)
• Variants of shortest path problem:

1. Single-source: Find shortest paths from a given source vertex s ∈ V to every
vertex v ∈ V.

2. Single-destination: Find shortest paths to a given destination vertex.

3. Single-pair: Find shortest path from u to v. In the worst case is the same as
solving single-source.

4. All-pairs: Find shortest path from u to v for all u, v ∈ V.

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

Bellman-Ford, Dijkstra

Floyd-Warshall

SSSP

APSP

Fin
al

Rev
iew

Shortest Paths (Weighted Graphs)
• Before discussing the algorithms, let’s see some of the main

characteristics of the shortest path problem
1. Optimal substructure
• Any sub-path of a shortest path is a shortest path.

2. Cycles
3. Outputs the SSSP problem

• Shortest path distance d[v]
• Shortest path predecessors/ Shortest path tree

4. Initialization
5. Relaxation

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

Fin
al

Rev
iew

Shortest Paths (Weighted Graphs)
• Shortest path properties

1. Triangle inequality
2. Upper-bound property
3. No-path property
4. Convergence property
5. Path relaxation property

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

Fin
al

Rev
iew

SSSP: Bellman-Ford
• Bellman-Ford
• Dynamic programming approach
• Allows negative-weight edges.
• Computes d[v] and π[v] for all v ∈ V.
• Returns TRUE if no negative-weight

cycles reachable from s, FALSE
otherwise.
• Running time: Θ(𝑉 𝐸)

• Proof of correctness using path-
relaxation property (CLRS 24.1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

Fin
al

Rev
iew

SSSP: Bellman-Ford
• Bellman-Ford
• So, in short,
• The algorithm iterates at most |V|-1 times.
• At each iteration, it updates (relaxes)

along all edges.

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

Fin
al

Rev
iew

SSSP: Bellman-Ford
• Example
• 5 vertices à 4 iterations

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

S

t

y

x

z

i s t y x z
0
1
2
3
4

v 𝝅(v)
s

t

y

x

z

Parents (path)

Fin
al

Rev
iew

SSSP: Bellman-Ford
• Example
• 4 iterations
• Initialization
• Relaxation
• Shortest path

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

S

t

y

x

z

i s t y x z
0 0 ∞ ∞ ∞ ∞
1 0 2 7 4 2
2 0 2 7 4 -2
3 0 2 7 4 -2
4 0 2 7 4 -2

0

7 -2

42

No negative-weight cycle
Return TRUE

v 𝝅(v)
s ∅

t x
y s
x y

z t

Parents (path)

Fin
al

Rev
iew

SSSP: Bellman-Ford Summary
• Bellman-Ford
• Dynamic programming approach
• How to apply? (Main steps)
1. Create two tables (both can be

implemented using 1D arrays)
• One for “d”, and
• Another for “𝝅(v)”

2. Initialize the tables

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

s t y x z
i 0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Fin
al

Rev
iew

SSSP: Bellman-Ford Summary
• Bellman-Ford
• Dynamic programming approach
• How to apply? (Main steps)
1. Create two tables (both can be

implemented using 1D arrays)
• One for “d”, and
• Another for “𝝅(v)”

2. Initialize the tables
3. Iterate over each node

and each time iterate
over all edges and
update the tables if
necessary (relaxation)

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

s t y x z
i 0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Θ(𝑉 𝐸)

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm
• Dijkstra
• Greedy approach
• No negative-weight edges.
• Essentially a weighted version of BFS
• Instead of a FIFO queue, uses a

priority queue. Keys are shortest-path
weights (d[v]).
• Have two sets of vertices:

• S = vertices whose final shortest-path
weights are determined,

• Q = priority queue = V − S.

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

Min priority queue
e.g., binary heap

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm
• Dijkstra’s algorithm running time:
• Like Prim’s algorithm, depends on

implementation of priority queue.

• If binary heap, each operation takes
O(log |V|) time ⇒ O(|E| log |V|).

• If a Fibonacci heap:
• Each Extract-Min takes O(1) amortized time.
• There are O(|V|) other operations, taking

O(log |V|) amortized time each.
• Therefore, time is O(|V| log |V| + |E|).

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

Running time?

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm
• Dijkstra
• So, in short,
• The algorithm maintains a set 𝑆 of vertices

whose final shortest-path weights from the
source s have already been determined.
• The algorithm repeatedly selects the vertex
𝑢 ∈ 𝑉 − 𝑆 with the minimum shortest-path
estimate, adds 𝑢 to 𝑆, and relaxes all edges
leaving 𝑢.
• Greedy strategy:

Always chooses the “lightest” or “closest”
vertex in 𝑉 − 𝑆 to add to set 𝑆.

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm
• Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

S

t

y

x

z

s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm
• Example

• S = {s, y, z, t, x}
• Q = {s: 0, t: 8, y: 5, x: 9, z: 7}

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

S

t

y

x

z

s t y x z
0 8 5 9 7

v 𝝅(v)
s ∅

t y

y s

x t

z y

Parents (path)

Shortest distance

unvisited nodes
(priority queue)

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm Summary
• Dijkstra
• Greedy approach
• No negative-weight edges.
• Essentially a weighted version of BFS
• Instead of a FIFO queue, uses a

priority queue. Keys are shortest-path
weights (d[v]).
• If binary heap, each operation takes

O(log |V|) time ⇒ O(|E| log |V|).

• How to apply? (Main steps)

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm Summary
• Dijkstra
• Greedy approach
• No negative-weight edges.
• How to apply? (Main steps)
1. Create three data structure

• One for the priority queue Q (usually min
binary heap)

• One for “d” shortest path weight estimation
• Another for “𝝅(v)”

2. Initialize them

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Q = {s: 0, t: ∞, y: ∞, x: ∞, z: ∞}

Fin
al

Rev
iew

SSSP: Dijkstra’s Algorithm Summary
• Dijkstra
• Greedy approach
• No negative-weight edges.
• How to apply? (Main steps)
1. Create three data structure

• One for the priority queue Q
• One for “d” shortest path weight estimation
• Another for “𝝅(v)”

2. Initialize them
3. At each step deque the min-distance

not chosen node u from the priority
queue, and update the neighbors
(relax) and the key of the priority Q.

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Q = {s: 0, t: ∞, y: ∞, x: ∞, z: ∞}

O(|E| log |V|).

Fin
al

Rev
iew

All-Pairs Shortest Path (APSP)
• Problem description
• Given graph G = (V, E), and a weight function w: E → ℝ
• Output: An 𝑛 × 𝑛 matrix of shortest path distances 𝛿 𝑢, 𝑣 .

• Can we use Bellman-Ford or Dijkstra’s algorithms?
• Running Bellman-Ford once from each vertex:

• O(𝑉 (𝐸)which is O(𝑉)) if the graph is dense (𝐸 = Θ(𝑉 ()).

• If non-negative weights, then we can run Dijkstra’s algorithm once from each
vertex:
• O(𝑉 𝐸 log |𝑉|)with binary heap – O(𝑉 *) if dense,
• O(𝑉 (log 𝑉 + 𝑉 𝐸)with Fibonacci heap – O(𝑉 *) if dense.

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

Fin
al

Rev
iew

APSP: Floyd-Warshall
• Floyd-Warshall algorithm

• Dynamic programming approach

• We will use a weight matrix W which is defined as: 𝑊,- = <
0 𝑖 = 𝑗

𝑤(𝑖, 𝑗) 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝐸
∞ 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∉ 𝐸

• Recurrence relation: 𝑑,-
(/) =

𝑊,- 𝑘 = 0

min<
𝑑,-
(/1$)

𝑑,/
(/1$) + 𝑑/-

(/1$) 𝑘 ≥ 1

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

We want 𝐷(9) = 𝑑5:
(9)

Fin
al

Rev
iew

APSP: Floyd-Warshall
• Floyd-Warshall algorithm

• Recurrence relation: 𝑑5:
(4) =

𝑊5: 𝑘 = 0

min\
𝑑5:
(473)

𝑑54
(473) + 𝑑4:

(473) 𝑘 ≥ 1

• Implementation:
• Bottom-up (iterative)

• Running time?

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

We want 𝐷(9) = 𝑑5:
(9)

Fin
al

Rev
iew

APSP: Floyd-Warshall
• Floyd-Warshall algorithm

• Implementation:
• Bottom-up (iterative)

• Running time?
• 𝑂(𝑉 *)

• Memory required?
• 𝑂(𝑉 *)
• But we only use the computations from the previous step (k-1). So, we can only store the

last step computations à 𝑂(𝑉 ()

CS-3510: Design and Analysis of Algorithms | Summer 2022 73

Fin
al

Rev
iew

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 74

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iewType of Questions in Final Exam for graph-related problems:

- Short answers /Definition/ True/False
- Run a particular shortest path algorithm (Bellman-Ford, Dijkstra, Floyd-Warshall) on a

given graph (step-by-step solution)
- Designing (explaining) an algorithm for a graph-related problem

- [Detecting that the problem is a graph-related problem]
- Which one of the discussed algorithms (in this case, shortest path algorithms) can

be used to solve the current problem and how? (Describe your algorithm and justify
the correctness…)

- Discuss the overall time complexity. (The running time takes to create the
corresponding graph and the running time takes to solve the problem)

- IMPORTANT REMINDER: You can use the algorithms that we discussed in class
(e.g., Bellman-Ford, Dijkstra’s, …) without explaining how these algorithms work
or proving their correctness. (See HW5/Q1 solution)

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST,

shortest path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 75

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 76

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Flow Network: Min-Cut Problem

CS-3510: Design and Analysis of Algorithms | Summer 2022 77

Cut notations: (A, B) ≡ (A, V-A) ≡ (A, V\A)

Fin
al

Rev
iew

Flow Network: Min-Cut Problem

CS-3510: Design and Analysis of Algorithms | Summer 2022 78

Fin
al

Rev
iew

Flow Network: Max-Flow Problem

CS-3510: Design and Analysis of Algorithms | Summer 2022 79

Fin
al

Rev
iew

Ford–Fulkerson Algorithm
• Q. Why does the greedy algorithm fail?
• A. Once greedy algorithm increases flow on an edge, it never

decreases it.
• Bottom line.

Need some mechanism to
“undo” a bad decision.

• Ex.
Consider flow network G .
The unique max flow f * has f *(v, w) = 0.
Greedy algorithm could choose s→v→w→t as first path.

CS-3510: Design and Analysis of Algorithms | Summer 2022 80

Fin
al

Rev
iew

Residual Network

CS-3510: Design and Analysis of Algorithms | Summer 2022 81

Fin
al

Rev
iew

Augmenting Path

CS-3510: Design and Analysis of Algorithms | Summer 2022 82

• Def. An augmenting path is a simple
s↝t path in the residual network Gf
• Def. The bottleneck capacity of an

augmenting path P is the minimum
residual capacity of any edge in P.

• Key property. Let f be a flow and let P
be an augmenting path in Gf . Then,
after calling f ʹ ← AUGMENT(f, c, P),
the resulting f ʹ is a flow and val(f ʹ) =
val(f) + bottleneck(Gf, P).

Fin
al

Rev
iew

Ford–Fulkerson Algorithm
• Ford–Fulkerson augmenting path algorithm
• Start with f (e) = 0 for each edge e ∈ E.
• Find an s↝t path P in the residual network Gf .
• Augment flow along path P.
• Repeat until you get stuck.

CS-3510: Design and Analysis of Algorithms | Summer 2022 83

Fin
al

Rev
iew

Ford–Fulkerson Algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 84

• Start with f (e) = 0 for each edge e ∈ E.
• Find an s↝t path P in the residual network Gf .
• Augment flow along path P.
• Repeat until you get stuck.

Fin
al

Rev
iew

Max-Flow Min-Cut Theorem
• Max-flow min-cut theorem: Value of a max flow = capacity of a min cut
• Augmenting path theorem: A flow f is a max flow iff no augmenting paths.
• Proof : The following three conditions are equivalent for any flow f :

1. There exists a cut (A, B) such that cap(A, B) = val(f).
2. f is a max flow.
3. There is no augmenting path with respect to f.

CS-3510: Design and Analysis of Algorithms | Summer 2022 85

if Ford–Fulkerson terminates,
then f is max flow

Fin
al

Rev
iew

Max-Flow Min-Cut Theorem
• Computing a minimum cut from a maximum flow
• Theorem. Given any max flow f , can compute a min cut (A, B) in O(|E|) time.
• Proof. Let A = set of nodes reachable from s in residual network Gf . ▪

CS-3510: Design and Analysis of Algorithms | Summer 2022 86

Fin
al

Rev
iew

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 87

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al

Rev
iew

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 88

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Type of Questions of flow network in Final Exam:
- Short answers /Definition/ True/False
- A flow network with the values of flow/capacity of each edge is given

- Short answer questions regarding the given flow
- Performing one/two step(s) of the Ford-Fulkerson algorithm to find the maxflow
- Give a min-cut
- Similar to HW5/Q3

Final Exam

• Contents: Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST,

shortest path, flow network)
•NP-completeness

CS-3510: Design and Analysis of Algorithms | Summer 2022 89

NP-Completeness
• So far, all algorithms we have seen could solve the given problem in

polynomial time à complexity class “P”
• Problems in P are considered tractable

• Problems not in P are intractable

• NP-completeness is a form of bad news!
• There exist many important problems that cannot be solved quickly.

CS-3510: Design and Analysis of Algorithms | Summer 2022 90

Fin
al

Rev
iew

Optimization vs. Decision Problems
• Decision problems
• Given an input and a question regarding a problem, determine if the answer is

yes or no

• Optimization problems
• Find a solution with the “best” value

• Optimization problems can be cast as decision problems that are easier
to study

CS-3510: Design and Analysis of Algorithms | Summer 2022 91

Fin
al

Rev
iew

Class “P”
• Class P consists of [decision] problems that are solvable in polynomial

time
• Recall from the first lecture:
• [slide #36] Polynomial time à Running time is Ο 𝑛4 for some constant 𝑘 > 0.
• Examples

• Linear search O(n)
• Dynamic programming solutions (O(n), O(n2) , O(n3), …)
• Sorting (O(n2), O(nlogn))
• Divide-and-conquer solutions
• Graph algorithms O(n+m), O(mlogn), …

• Non-polynomial time à Ο 29 , Ο 𝑎9 , Ο 𝑛! , Ο 𝑛9 , …

CS-3510: Design and Analysis of Algorithms | Summer 2022 92

Problems in P are
Considered/called tractable

Problem not in P are
intractable

Fin
al

Rev
iew

Class “NP”
• First of all: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

•NP is the class of problems for which a candidate solution
can be verified in polynomial time.

• P is a subset of NP (P ⊆ NP)

CS-3510: Design and Analysis of Algorithms | Summer 2022 93

Fin
al

Rev
iew

Class “NP”
•Nondeterministic algorithms entail a two-stage
procedure:

1. Nondeterministic “guessing” stage
• Generate randomly an arbitrary candidate solution (≡ “certificate”)

2. Deterministic “verifying” stage
• Take the certificate and the instance to the problem and returns YES

if the certificate represents a solution (verifying in polynomial time)

CS-3510: Design and Analysis of Algorithms | Summer 2022 94

Note in NP algorithms the verification step is polynomial

Fin
al

Rev
iew

P vs. NP
• Is P = NP?
• Mentioned earlier that any problem in P is also in NP. So, P is a subset

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

• It means if it is always easy to check a candidate solution, should it also be
easy to find a solution?

• Answer? Most computer scientists believe that this is false, but we do not have
a proof

CS-3510: Design and Analysis of Algorithms | Summer 2022 95

Fin
al

Rev
iew

NP-Complete (NPC)
• NP-complete problems are a class of "hardest" problems in NP.
• If you can solve an NP-complete problem, then you can solve all NP

problems (show later).
• Hence, if any NP-complete problem can be solved in polynomial time,

then all problems in NP can be, and thus P = NP.
• Precise/formal definition coming later...

CS-3510: Design and Analysis of Algorithms | Summer 2022 96

Fin
al

Rev
iew

Possible Worlds
• Therefore, there are two possibilities:

CS-3510: Design and Analysis of Algorithms | Summer 2022 97

All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC

Fin
al

Rev
iew

Reductions
• 𝐴 ≤ 𝐵: Reduction from A to B is showing that we can solve A using

the algorithm that solves B
• If we have an oracle for solving B, then we can solve A by making

polynomial number of computations and polynomial number of calls
to the oracle for B
• We can transform the inputs of A to inputs of B

CS-3510: Design and Analysis of Algorithms | Summer 2022 98

𝑓 Problem B

Problem A

𝛼 𝛽
YesYes

No No

Fin
al

Rev
iew

Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as 𝐴 ≤O 𝐵 if:

1. There exists a function 𝑓 that converts the input of A to inputs of B in
polynomial time

2. 𝐴 𝑖 = YES ⟺ 𝐵 𝑓 𝑖 = YES

CS-3510: Design and Analysis of Algorithms | Summer 2022 99

Fin
al

Rev
iew

Implications of Polynomial-Time Reductions
• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If 𝑋 ≤! 𝑌 and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

• Establish intractability. If 𝑋 ≤! 𝑌 and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

• Establish equivalence. If 𝑋 ≤! 𝑌 and 𝑌 ≤! 𝑋 , we use notation 𝑋 ≡! 𝑌.

• Transitivity. If 𝑋 ≤! 𝑌 and 𝑌 ≤! 𝑍 ,then 𝑋 ≤! 𝑍.

CS-3510: Design and Analysis of Algorithms | Summer 2022 100

Fin
al

Rev
iew

NP-Completeness (Formal Definition)
• A problem 𝑌 is NP-hard if 𝑋 ≤O 𝑌 for all 𝑋 ∈ 𝐍𝐏
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem

• A problem Y is NP-complete if:
1. 𝑌 ∈ NP
2. 𝑌 is NP-hard

CS-3510: Design and Analysis of Algorithms | Summer 2022 101

https://en.wikipedia.org/wiki/P_versus_NP_problem

Fin
al

Rev
iew

Establishing NP-Completeness
• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (𝑌 ∈ NP)

• Describe how a potential solution will be represented
• Describe a procedure to check whether the potential solution is a correct solution to the

problem instance, and argue that this procedure takes polynomial time

• Step 2. Choose an NP-complete problem 𝑋.

• Step 3. Prove that 𝑋 ≤< 𝑌 (X is poly-time reducible to Y).
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
• Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 102

Fin
al

Rev
iew

CS-3510: Design and Analysis of Algorithms | Summer 2022 103

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard
A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

Once we establish the
first "natural" NPC
problem, others fall like
dominoes! 3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P≤P ≤P

Fin
al

Rev
iew

CS-3510: Design and Analysis of Algorithms | Summer 2022 104

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Fin
al

Rev
iew

Genres of NP-complete problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 105

• Six basic genres of NPC problems and paradigmatic examples.
1. Constraint satisfaction problems: SAT, 3-SAT.
2. Packing problems: SET-PACKING, INDEPENDENT SET.
3. Covering problems: SET-COVER, VERTEX-COVER.
4. Sequencing problems: HAMILTONIAN-CYCLE, TSP.
5. Partitioning problems: 3-COLOR, 3D-MATCHING.
6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Fin
al

Rev
iew

3SAT Problem
• We want to show that 3SAT is an NP-complete problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 106

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (𝑌 ∈ NP)

Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem 𝑋.

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3SAT

X à SAT

SAT ≤𝒑 3SAT

Fin
al

Rev
iew

Independent Set Problem
• We want to show Independent Set (IS) problem is an NPC problem

CS-3510: Design and Analysis of Algorithms | Summer 2022 107

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (𝑌 ∈ NP)

Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem 𝑋.

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à IS

X à 3SAT

3SAT ≤𝒑 IS

Fin
al

Rev
iew

3-Colorability Problem
• 3-COLOR: Given an undirected graph G does there exists a way to

color the nodes using at most three colors (e.g., red, green, and blue)
so that no adjacent nodes have the same color?
• We want to show 3-COLOR problem is an NPC problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 108

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (𝑌 ∈ NP)

Step 2. Choose an NP-complete problem 𝑋.

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3-COLOR

X à 3SAT

3SAT ≤𝒑 3-COLOR

Fin
al

Rev
iew

CS-3510: Design and Analysis of Algorithms | Summer 2022 109

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Fin
al

Rev
iew

CS-3510: Design and Analysis of Algorithms | Summer 2022 110

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Fin
al

Rev
iewType of Questions of NP-completeness in Final Exam:

- Short answers /Definition/ True/False
- NPC establishment problems

Preparation for Exam
• Suggested preparation steps:
• Start with lecture slides, comprehend step-by-step

solutions/algorithms.
• Make sure you have downloaded the latest version of slides. (Minor

updates in Lec8, 9, and 10)
• Textbook suggested readings.
• Run the demo codes and print step-by-step computations/results
• Particularly, helpful for graph-related algorithms.

• Homework assignments à HW5
• Practice problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 111

Final Exam: Practice Problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 112

Course website

Final Exam
• Problem 1: Short Answer Questions
• Problem 2: Divide-and-Conquer
• Problem 3: Dynamic Programming
• Problem 4: Shortest Path Algorithms
• Problem 5: Graph-related (Traversal, MST, Shortest Path)
• Problem 6: Flow Network

• 80 points (+ bonus perhaps)
• Time ~120 minutes

CS-3510: Design and Analysis of Algorithms | Summer 2022 113

Final Words …
• Congratulations! We made it!

CS-3510: Design and Analysis of Algorithms | Summer 2022 114

Design and Analysis of Algorithms
What?

Algorithms, Algorithmic paradigms; design and
correctness
Performance analysis

Why?
Fundamental to all areas of computer science

Operating systems, Networks and distributed
systems, Machine learning, Data science,
Numerical computation, Cryptography,
Computational biology, etc.

Inseparable part of every technical interview
Internship, Part-time, Full-time

Useful and Fun!
Problem solving skills
Competitive programming, Hackathons, etc.

Final Words …
• Congratulations! We made it!
• I hope you have enjoyed the course as much as I enjoyed teaching it.
• Course materials
• Lecture notes and recordings, demo codes, assignments, and exams
• The order of the topic presented
• Covered future paths

• Theory, graduate studies, …
• Internship, fulltime jobs (SWE, PM, ML, …)

• Course website remains available through the same address.
• http://www.cs3510.com
• A summary/gist is added for future use and reference

CS-3510: Design and Analysis of Algorithms | Summer 2022 115

http://www.cs3510.com/

Final Words …
• More importantly, I hope this course has made you more interested in

algorithm design and related topics
• Lecture notes and recording

• Course plan and roadmap
• The recording option was not provided by CoC, but as requested by the majority, we

did it anyway with some technical difficulties (zoom meeting, recording, YouTube
upload, …).

• No mandatory class attendance
• Exam and assignments

• Reduced number of assignments / adjusted workload for a summer semester
• Reduced number of problems à More practice problems
• Consistency between lecture notes, assignments, and exam problems
• Clear exam/evaluation plan
• Flexible deadlines, exam times, …

CS-3510: Design and Analysis of Algorithms | Summer 2022 116

Learning and enjoying the concepts is what
matters most…!

Final Words …
• Please let us know what you think about the course in general, and if

you have any comments and/or suggestions about the course materials,
presentation, etc.

• Course Instructor Opinion Surveys (CIOS)
• Available from 07/18 until 08/07

CS-3510: Design and Analysis of Algorithms | Summer 2022 117

Thank you!
• Algorithms are fun!

• Amazing experience teaching this class
• Thanks to all of you and TAs
• Hope you’ve had fun and learned useful material

• My own favorite topics in computer science
• Algorithms [along with Data Structures]
• Machine Learning/Deep Learning

• Stay in touch! Do not hesitate to contact me after this course
• Questions, codes, interview experiences/questions, …
• Email, personal website, LinkedIn, GitHub

• Wish you all the best for the future!

CS-3510: Design and Analysis of Algorithms | Summer 2022 118

