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Overview
•General course review 
•What we have accomplished

•Final exam: 
• Problem/topic distribution
• Preparation

•Final remarks
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Summary
Design and Analysis of Algorithms

• What?
• Algorithms
• Algorithmic paradigms; design and correctness
• Performance analysis

• Why?
• Fundamental to all areas of computer science

• Operating systems, Networks and distributed systems, Machine learning, Data science, Numerical 
computation, Cryptography, Computational biology, etc.

• Inseparable part of every technical interview
• Internship, Part-time, Full-time

• Useful and Fun!
• Problem solving skills
• Competitive programming, Hackathons, etc.
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Final Exam
•Date: Thursday, July 28, 2022
• Time: 03:00 pm – 05:00 pm      
• Location: Klaus 2443

• Closed book; No calculator 
•One page sheet of notes
• Letter size
• Both sides
• Typed or hand-written
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Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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Time Complexity
• Asymptotic Order of Growth
• It is easier to talk about the lower bound and upper bound of the running time.

• To practically deal with time complexity analysis, we use asymptotic notations.

• The asymptotic growth of a function (in this case T(n)) is specified using Θ, Ο, 
and Ω notations.

• Asymptotic means for “very large” input size, as n grows without bound or 
“asymptotically”.
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Time Complexity
• Asymptotic Order of Growth
• In general, the asymptotic notations define bounds on the growth of a function. 

Informally, a function 𝑓 𝑛 is:

• Ω(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic lower bound for 𝑓 𝑛

• Ο(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic upper bound for 𝑓 𝑛

• Θ(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic tight bound for 𝑓 𝑛
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Time Complexity
• Asymptotic Order of Growth (Formal definition):
• Big Omega (lower bound):

f(n) is Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that 
f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• Big O (upper bound):
f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that 
0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• Big Theta (tight bound):  
f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0 
such that 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n) for all n ≥ n0. 
• Note: f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n))
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Time Complexity
• Big O Notation Properties

• So, we can ignore the lower terms and constants:

• Ex. f = 2n3 + 4n2 -5n + 1∈ O(n3)
• Ex. f = 4n5 ∈ O(n5)
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Reflexivity f is O(f)
Constants If f is O(g) and c > 0, then cf is O(g)
Products If f1 is O(g1) and f2 is O(g2), then f1 f2 is O(g1 g2)
Sums
(Additivity)

If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2})
Ex. If f1 ∈ O(n2) and f2 ∈ O(n4). Then, f1 + f2 ∈ O(n4)

Transitivity If f is O(g) and g is O(h), then f is O(h)
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Time Complexity
• Asymptotic Bounds for Some Common Functions
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Polynomials f(n) = a0 + a1n + ... + adnd is Θ(nd) and thus, O(nd) if ad>0.

Logarithms loga n is Θ(logb n) for every a>1 and b>1.
Note: O(loga n) = O(logb n) (Recall logb n = logb a × loga n)

Logarithms vs polynomials loga n is O(nd) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials nd is O(rn) for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.
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Asymptotic Order of Growth Hierarchy
𝑛!
𝑛!
3!
2!
𝑛", 2𝑛", 𝑛 − 1000 ", 𝑛" − 𝑛#

𝑛#, 2𝑛#, −1000𝑛# + 𝑛, 100𝑛# + log 𝑛
𝑛 log 𝑛
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𝑛
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log# 𝑛
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log log 𝑛
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𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔
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in the Final Exam:
- Short answers 
- Definition
- True/False questions



Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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Divide-and-Conquer (D&C)
• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time 
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.
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Divide-and-Conquer (D&C)
• Discussed examples:
• Binary-search

à Variant/applications of binary search
• Merge-sort

à Variant/applications of merge-sort
• Quick-sort

à Variant/applications of quick-sort
• Matrix multiplication

• Closest pair of points
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Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:
- Variant (Design) /applications /parts of 

binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case 
- Time and space complexity
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Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,  

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛&'(! ) , if 𝑎 > 𝑏* (case 1)
Θ 𝑛* log 𝑛 , if 𝑎 = 𝑏* (case 2)
Θ 𝑛* , if 𝑎 < 𝑏* (case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇 !

#
+ 2!

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 19

Application of Master Theorem
- The recurrence relation is 

given à direct
- Dominated by 

root/leaves/evenly 
distributed

- An algorithm (D&C) is 
given, you need to find the 
recurrence first. Then, apply 
the Master Theorem à
indirect

- (Very similar to Exam-1)
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Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer
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Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)
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Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler 

subproblems
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DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack 
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Type of questions in Final Exam:
- Design a DP algorithm (1D or 2D)
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity
- Very similar to the example solved in 

class and the assignments.
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Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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What about the 
Greedy 
algorithms?



Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 25

Fin
al 

Rev
iew



Greedy Choice Property 
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution 

by making locally optimal choices. 
• In other words, when we are considering which choice to make, we 

make the choice that looks best in the current problem, without 
considering results from subproblems. 
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the 

subproblem that remains. 
• Makes its first choice before solving any subproblems. 
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Difference with Dynamic Programming
• Dynamic programming: 
• Make a choice at each step, but the choice usually depends on the solutions to 

subproblems. 
• Consequently, we typically solve dynamic-programming problems in a 

bottom-up manner, progressing from smaller subproblems to larger 
subproblems. 
• Even in top-down approach, we use memoizing. So, even though the code 

works top down, we still solve the subproblems before making a choice.
• Solves the subproblems before making the first choice.
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Greedy Algorithms
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problem

subproblem

Subsub
problem

Subsub
problem

Divide-and-Conquer Dynamic Programming Greedy Approach

problem

subproblem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

problem

subproblem

Subsub
problem

Optimal substructure
But only one subproblem
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Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal 

substructure.
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Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal 

substructure.
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Type of questions in Final Exam:
- “Perhaps” T/F, short answer, or 

definition 



Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, shortest 

path, flow network)
•NP-completeness
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Graph Algorithms
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Graph Definitions and Terminology: Summary
• Paths and connectivity
• Connected graph, connected component
• Cycle
• DAG
• Bipartiteness
• Trees
• …
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Type of Questions in Final Exam:
- Short answers 
- Definition
- True/False questions
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Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 
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A

E
B

C
D

G

F

distance from source
parent

white := unvisited node

gray := visited node

black := visited & all 
unvisited neighbors 
added to the queue
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
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A

E
B

C

D
G

F
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Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time 
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once
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Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|) 

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|) 
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BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it 
searches the graph.

Ø We can print out the vertices on a shortest 
path from s to v, using the BFS tree

Ø We only have one distance measure 
(timestamp), denoted by d, assigned to each 
node, i.e., the time that a node visited for 
the first (and last) time.

Ø The predecessor subgraph of a depth-first 
search forms a depth-first forest 
comprising several depth-first trees. 

Ø DFS timestamps each node with two 
numbers; 
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.

Fin
al 

Rev
iew



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Type of Questions in Final Exam:
- Short answers /Definition/ True/False 
- Running BFS/DFS on a given graph (show your steps)
- BFS/DFS trees, discovery/finishing times, … 



Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order
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Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order
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Type of Questions in Final Exam for graph-related problems:
- Short answers /Definition/ True/False 
- Designing (explaining) an algorithm for a graph-related problem



Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance. 
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸* such that 𝐸* ⊆ 𝐸 is a spanning tree 

of G.
• Tree T spans the graph G
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Generic-MST
• Notes
• The set A is always acyclic.
• At any point G+ = (𝑉, 𝐴) is a forest
• At first when 𝐴 = 𝜙, we have |V| trees

in the forest G+, each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4)  runs for |V|-1 times to find the edges required to form 

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 45

Fin
al 

Rev
iew



MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that 

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree. 
• The safe edge added to A is always a least-weight edge connecting the tree to a 

vertex not in the tree. 
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MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 
of G.

• Tree T spans the graph G

• Minimum spanning tree 
• Spanning tree T for G such that the sum                               is minimized 
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Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O( E log V )

Prim Greedy Priority Queue (Binary Min-Heap) O( E log V )
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MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 
of G.

• Tree T spans the graph G

• Minimum spanning tree 
• Spanning tree T for G such that the sum                               is minimized 
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Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O( E log V )

Prim Greedy Priority Queue (Binary Min-Heap) O( E log V )

Type of Questions in Final Exam:
- Short answers /Definition/ True/False 
- Running Kruskal’s/Prim’s algorithms on a given graph (show your steps)
- Proving some properties of minimum spanning trees.

- Proof by contradiction (assume the given statement is not correct, 
then show this assumption will cause some contradictions à Thus, 
the given statement is true.)



Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, 

shortest path, flow network)
•NP-completeness
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Shortest Paths (Weighted Graphs)
• Problem description
• Given graph G = (V, E), and a weight function w: E → ℝ

• Weight of a path p=[𝑣2, 𝑣3, … , 𝑣4] = ∑edge_weights on path p

= ∑5634 𝑤(𝑣573, 𝑣5)

• Shortest-path weight from 𝑢 ↝ 𝑣 = 𝛿 𝑢, 𝑣 =
min
"($↝&)

𝑤 𝑝 , if there exists a path u ↝ v

∞, otherwise
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Shortest Paths (Weighted Graphs)
• Example
• Weighted, directed graph
• Shortest path from source s to other vertices
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S

t

y

x

z

Shortest path 1 Shortest path 2

Shortest path does not have to be unique.
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Shortest Paths (Weighted Graphs)
• Variants of shortest path problem:

1. Single-source: Find shortest paths from a given source vertex s ∈ V to every 
vertex v ∈ V.

2. Single-destination: Find shortest paths to a given destination vertex. 

3. Single-pair: Find shortest path from u to v. In the worst case is the same as 
solving single-source. 

4. All-pairs: Find shortest path from u to v for all u, v ∈ V. 
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Bellman-Ford,  Dijkstra

Floyd-Warshall

SSSP

APSP
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Shortest Paths (Weighted Graphs)
• Before discussing the algorithms, let’s see some of the main 

characteristics of the shortest path problem
1. Optimal substructure
• Any sub-path of a shortest path is a shortest path. 

2. Cycles
3. Outputs the SSSP problem

• Shortest path distance d[v]
• Shortest path predecessors/ Shortest path tree

4. Initialization
5. Relaxation
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Shortest Paths (Weighted Graphs)
• Shortest path properties

1. Triangle inequality 
2. Upper-bound property 
3. No-path property 
4. Convergence property
5. Path relaxation property 
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SSSP: Bellman-Ford 
• Bellman-Ford
• Dynamic programming approach
• Allows negative-weight edges.
• Computes d[v] and π[v] for all v ∈ V.
• Returns TRUE if no negative-weight 

cycles reachable from s, FALSE 
otherwise. 
• Running time: Θ( 𝑉 𝐸 )

• Proof of correctness using path-
relaxation property (CLRS 24.1)
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SSSP: Bellman-Ford 
• Bellman-Ford
• So, in short,
• The algorithm iterates at most |V|-1 times.
• At each iteration, it updates (relaxes) 

along all edges.
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SSSP: Bellman-Ford 
• Example
• 5 vertices à 4 iterations
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S

t

y

x

z

i s t y x z
0
1
2
3
4

v 𝝅(v)
s

t

y

x

z

Parents (path)
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SSSP: Bellman-Ford 
• Example
• 4 iterations
• Initialization
• Relaxation
• Shortest path
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S

t

y

x

z

i s t y x z
0 0 ∞ ∞ ∞ ∞
1 0 2 7 4 2
2 0 2 7 4 -2
3 0 2 7 4 -2
4 0 2 7 4 -2

0

7 -2

42

No negative-weight cycle 
Return TRUE

v 𝝅(v)
s ∅

t x
y s
x y

z t

Parents (path)
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SSSP: Bellman-Ford Summary
• Bellman-Ford
• Dynamic programming approach
• How to apply? (Main steps)
1. Create two tables (both can be 

implemented using 1D arrays)
• One for “d”, and 
• Another for “𝝅(v)”

2. Initialize the tables
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s t y x z
i 0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance
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SSSP: Bellman-Ford Summary
• Bellman-Ford
• Dynamic programming approach
• How to apply? (Main steps)
1. Create two tables (both can be 

implemented using 1D arrays)
• One for “d”, and 
• Another for “𝝅(v)”

2. Initialize the tables
3. Iterate over each node

and each time iterate 
over all edges and 
update the tables if 
necessary (relaxation)
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s t y x z
i 0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Θ( 𝑉 𝐸 )
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SSSP: Dijkstra’s Algorithm 
• Dijkstra
• Greedy approach
• No negative-weight edges.
• Essentially a weighted version of BFS
• Instead of a FIFO queue, uses a 

priority queue. Keys are shortest-path 
weights (d[v]). 
• Have two sets of vertices: 

• S = vertices whose final shortest-path 
weights are determined, 

• Q = priority queue = V − S. 
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Min priority queue 
e.g., binary heap
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SSSP: Dijkstra’s Algorithm 
• Dijkstra’s algorithm running time:
• Like Prim’s algorithm, depends on 

implementation of priority queue. 

• If binary heap, each operation takes 
O(log |V| ) time ⇒ O(|E| log |V|). 

• If a Fibonacci heap: 
• Each Extract-Min takes O(1) amortized time. 
• There are O(|V|) other operations, taking 

O(log |V|) amortized time each. 
• Therefore, time is O(|V| log |V| + |E|). 
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Running time?
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SSSP: Dijkstra’s Algorithm 
• Dijkstra
• So, in short,
• The algorithm maintains a set 𝑆 of vertices 

whose final shortest-path weights from the 
source s have already been determined. 
• The algorithm repeatedly selects the vertex
𝑢 ∈ 𝑉 − 𝑆 with the minimum shortest-path 
estimate, adds 𝑢 to 𝑆, and relaxes all edges 
leaving 𝑢. 
• Greedy strategy: 

Always chooses the “lightest” or “closest” 
vertex in 𝑉 − 𝑆 to add to set 𝑆.
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SSSP: Dijkstra’s Algorithm 
• Example
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S

t

y

x

z

s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance
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SSSP: Dijkstra’s Algorithm 
• Example

• S = {s, y, z, t, x}
• Q = {s: 0, t: 8, y: 5, x: 9, z: 7}
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S

t

y

x

z

s t y x z
0 8 5 9 7

v 𝝅(v)
s ∅

t y

y s

x t

z y

Parents (path)

Shortest distance

unvisited nodes 
(priority queue)
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SSSP: Dijkstra’s Algorithm Summary 
• Dijkstra
• Greedy approach
• No negative-weight edges.
• Essentially a weighted version of BFS
• Instead of a FIFO queue, uses a 

priority queue. Keys are shortest-path 
weights (d[v]). 
• If binary heap, each operation takes 

O(log |V| ) time ⇒ O(|E| log |V|). 

• How to apply? (Main steps)
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SSSP: Dijkstra’s Algorithm Summary 
• Dijkstra
• Greedy approach
• No negative-weight edges.
• How to apply? (Main steps)
1. Create three data structure

• One for the priority queue Q (usually min 
binary heap)

• One for “d” shortest path weight estimation
• Another for “𝝅(v)”

2. Initialize them
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s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Q = {s: 0, t: ∞, y: ∞, x: ∞, z: ∞}
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SSSP: Dijkstra’s Algorithm Summary 
• Dijkstra
• Greedy approach
• No negative-weight edges.
• How to apply? (Main steps)
1. Create three data structure

• One for the priority queue Q 
• One for “d” shortest path weight estimation
• Another for “𝝅(v)”

2. Initialize them
3. At each step deque the min-distance 

not chosen node u from the priority 
queue, and update the neighbors 
(relax) and the key of the priority Q. 
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s t y x z
0 ∞ ∞ ∞ ∞

v 𝝅(v)
s ∅

t ∅

y ∅

x ∅

z ∅

Parents (path)

Shortest distance

Q = {s: 0, t: ∞, y: ∞, x: ∞, z: ∞}

O(|E| log |V|).
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All-Pairs Shortest Path (APSP)
• Problem description
• Given graph G = (V, E), and a weight function w: E → ℝ
• Output: An 𝑛 × 𝑛 matrix of shortest path distances 𝛿 𝑢, 𝑣 .

• Can we use Bellman-Ford or Dijkstra’s algorithms?
• Running Bellman-Ford once from each vertex:

• O( 𝑉 ( 𝐸 )which is O( 𝑉 )) if the graph is dense ( 𝐸 = Θ( 𝑉 ()).

• If non-negative weights, then we can run Dijkstra’s algorithm once from each 
vertex:
• O( 𝑉 𝐸 log |𝑉|)with binary heap – O( 𝑉 *) if dense,
• O( 𝑉 ( log 𝑉 + 𝑉 𝐸 )with Fibonacci heap – O( 𝑉 *) if dense.
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APSP: Floyd-Warshall
• Floyd-Warshall algorithm 

• Dynamic programming approach

• We will use a weight matrix W which is defined as: 𝑊,- = <
0 𝑖 = 𝑗

𝑤(𝑖, 𝑗) 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝐸
∞ 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∉ 𝐸

• Recurrence relation: 𝑑,-
(/) =

𝑊,- 𝑘 = 0

min<
𝑑,-
(/1$)

𝑑,/
(/1$) + 𝑑/-

(/1$) 𝑘 ≥ 1
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We want 𝐷(9) = 𝑑5:
(9)
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APSP: Floyd-Warshall
• Floyd-Warshall algorithm 

• Recurrence relation: 𝑑5:
(4) =

𝑊5: 𝑘 = 0

min\
𝑑5:
(473)

𝑑54
(473) + 𝑑4:

(473) 𝑘 ≥ 1

• Implementation:
• Bottom-up (iterative)

• Running time?
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We want 𝐷(9) = 𝑑5:
(9)

Fin
al 

Rev
iew



APSP: Floyd-Warshall
• Floyd-Warshall algorithm 

• Implementation:
• Bottom-up (iterative)

• Running time?
• 𝑂( 𝑉 *)

• Memory required?
• 𝑂( 𝑉 *)
• But we only use the computations from the previous step (k-1). So, we can only store the 

last step computations à 𝑂( 𝑉 ()
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Fin
al 

Rev
iewType of Questions in Final Exam for graph-related problems:

- Short answers /Definition/ True/False 
- Run a particular shortest path algorithm (Bellman-Ford, Dijkstra, Floyd-Warshall) on a 

given graph (step-by-step solution)
- Designing (explaining) an algorithm for a graph-related problem

- [Detecting that the problem is a graph-related problem]
- Which one of the discussed algorithms (in this case, shortest path algorithms) can 

be used to solve the current problem and how? (Describe your algorithm and justify 
the correctness…)

- Discuss the overall time complexity. (The running time takes to create the 
corresponding graph and the running time takes to solve the problem)

- IMPORTANT REMINDER: You can use the algorithms that we discussed in class 
(e.g., Bellman-Ford, Dijkstra’s, …) without explaining how these algorithms work 
or proving their correctness. (See HW5/Q1 solution)



Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, 

shortest path, flow network)
•NP-completeness
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Flow Network: Min-Cut Problem
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Cut notations: (A, B) ≡ (A, V-A) ≡ (A, V\A)

Fin
al 

Rev
iew



Flow Network: Min-Cut Problem
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Flow Network: Max-Flow Problem
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Ford–Fulkerson Algorithm
• Q. Why does the greedy algorithm fail?
• A. Once greedy algorithm increases flow on an edge, it never 

decreases it. 
• Bottom line. 

Need some mechanism to 
“undo” a bad decision. 

• Ex. 
Consider flow network G .
The unique max flow f * has f *(v, w) = 0. 
Greedy algorithm could choose s→v→w→t as first path. 
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Residual Network 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 81

Fin
al 

Rev
iew



Augmenting Path 
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• Def. An augmenting path is a simple
s↝t path in the residual network Gf
• Def. The bottleneck capacity of an

augmenting path P is the minimum
residual capacity of any edge in P.

• Key property. Let f be a flow and let P
be an augmenting path in Gf . Then,
after calling f ʹ ← AUGMENT( f, c, P),
the resulting f ʹ is a flow and val( f ʹ) =
val( f ) + bottleneck(Gf, P).
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Ford–Fulkerson Algorithm
• Ford–Fulkerson augmenting path algorithm 
• Start with f (e) = 0 for each edge e ∈ E. 
• Find an s↝t path P in the residual network Gf . 
• Augment flow along path P. 
• Repeat until you get stuck. 
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Ford–Fulkerson Algorithm
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• Start with f (e) = 0 for each edge e ∈ E. 
• Find an s↝t path P in the residual network Gf . 
• Augment flow along path P. 
• Repeat until you get stuck. 
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Max-Flow Min-Cut Theorem
• Max-flow min-cut theorem: Value of a max flow = capacity of a min cut
• Augmenting path theorem: A flow f is a max flow iff no augmenting paths. 
• Proof : The following three conditions are equivalent for any flow f : 

1. There exists a cut (A, B) such that cap(A, B) = val( f ). 
2. f is a max flow.
3. There is no augmenting path with respect to f. 
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if Ford–Fulkerson terminates,
then f is max flow 
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Max-Flow Min-Cut Theorem
• Computing a minimum cut from a maximum flow 
• Theorem. Given any max flow f , can compute a min cut (A, B) in O(|E|) time. 
• Proof. Let A = set of nodes reachable from s in residual network Gf . ▪
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 88

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Type of Questions of flow network in Final Exam:
- Short answers /Definition/ True/False 
- A flow network with the values of flow/capacity of each edge is given

- Short answer questions regarding the given flow
- Performing one/two step(s) of the Ford-Fulkerson algorithm to find the maxflow
- Give a min-cut
- Similar to HW5/Q3



Final Exam

• Contents:        Inclusive (including all discussed topics)

•Asymptotic order of growth, time and space complexity
•Divide-and-conquer
•Dynamic programming
•Graph algorithms (Traversal, applications, MST, 

shortest path, flow network)
•NP-completeness
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NP-Completeness 
• So far, all algorithms we have seen could solve the given problem in 

polynomial time à complexity class “P”
• Problems in P are considered tractable

• Problems not in P are intractable

• NP-completeness is a form of bad news!
• There exist many important problems that cannot be solved quickly. 
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Optimization vs. Decision Problems 
• Decision problems
• Given an input and a question regarding a problem, determine if the answer is 

yes or no

• Optimization problems
• Find a solution with the “best” value 

• Optimization problems can be cast as decision problems that are easier 
to study
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Class “P”
• Class P consists of [decision] problems that are solvable in polynomial 

time 
• Recall from the first lecture:
• [slide #36] Polynomial time à Running time is Ο 𝑛4 for some constant 𝑘 > 0.
• Examples

• Linear search O(n)
• Dynamic programming solutions (O(n), O(n2) , O(n3), …)
• Sorting (O(n2), O(nlogn))
• Divide-and-conquer solutions
• Graph algorithms O(n+m), O(mlogn), …

• Non-polynomial time à Ο 29 , Ο 𝑎9 , Ο 𝑛! , Ο 𝑛9 , …
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Problems in P are 
Considered/called tractable

Problem not in P are 
intractable
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Class “NP”
• First of all: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

•NP is the class of problems for which a candidate solution 
can be verified in polynomial time. 

• P is a subset of NP (P ⊆ NP)
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Class “NP”
•Nondeterministic algorithms entail a two-stage 
procedure:

1. Nondeterministic “guessing” stage
• Generate randomly an arbitrary candidate solution (≡ “certificate”) 

2. Deterministic “verifying” stage
• Take the certificate and the instance to the problem and returns YES

if the certificate represents a solution (verifying in polynomial time)
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Note in NP algorithms the verification step is polynomial
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P vs. NP
• Is P = NP? 
• Mentioned earlier that any problem in P is also in NP. So, P is a subset 

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

• It means if it is always easy to check a candidate solution, should it also be 
easy to find a solution?

• Answer? Most computer scientists believe that this is false, but we do not have 
a proof 
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NP-Complete (NPC)
• NP-complete problems are a class of "hardest" problems in NP. 
• If you can solve an NP-complete problem, then you can solve all NP 

problems (show later). 
• Hence, if any NP-complete problem can be solved in polynomial time, 

then all problems in NP can be, and thus P = NP.
• Precise/formal definition coming later... 
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Possible Worlds 
• Therefore, there are two possibilities:
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All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC
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Reductions 
• 𝐴 ≤ 𝐵: Reduction from A to B is showing that we can solve A using 

the algorithm that solves B 
• If we have an oracle for solving B, then we can solve A by making 

polynomial number of computations and polynomial number of calls 
to the oracle for B 
• We can transform the inputs of A to inputs of B  
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𝑓 Problem B

Problem A

𝛼 𝛽
YesYes

No No
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Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as 𝐴 ≤O 𝐵 if:

1. There exists a function 𝑓 that converts the input of A to inputs of B in 
polynomial time 

2. 𝐴 𝑖 = YES ⟺ 𝐵 𝑓 𝑖 = YES
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Implications of Polynomial-Time Reductions 
• Purpose. Classify problems according to relative difficulty. 

• Design algorithms. If 𝑋 ≤! 𝑌 and Y can be solved in polynomial-time, 
then X can also be solved in polynomial time. 

• Establish intractability. If 𝑋 ≤! 𝑌 and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time. 

• Establish equivalence. If 𝑋 ≤! 𝑌 and 𝑌 ≤! 𝑋 , we use notation 𝑋 ≡! 𝑌. 

• Transitivity. If 𝑋 ≤! 𝑌 and 𝑌 ≤! 𝑍 ,then 𝑋 ≤! 𝑍. 
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NP-Completeness (Formal Definition)
• A problem 𝑌 is NP-hard if 𝑋 ≤O 𝑌 for all 𝑋 ∈ 𝐍𝐏
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies 

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem 

• A problem Y is NP-complete if: 
1. 𝑌 ∈ NP
2. 𝑌 is NP-hard
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https://en.wikipedia.org/wiki/P_versus_NP_problem

Fin
al 

Rev
iew



Establishing NP-Completeness 
• Recipe to establish NP-completeness of problem Y. 
• Step1. Show that Y is in NP.  (𝑌 ∈ NP)

• Describe how a potential solution will be represented 
• Describe a procedure to check whether the potential solution is a correct solution to the 

problem instance, and argue that this procedure takes polynomial time 

• Step 2. Choose an NP-complete problem 𝑋.  

• Step 3. Prove that 𝑋 ≤< 𝑌 (X is poly-time reducible to Y). 
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
• Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.
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PSolvable in poly-time

Candidate can be evaluated 
in poly-time

NP

NPC

NP-hard
A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem 

A problem Y is NP-complete if: 
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can 
polynomially be reduced 
to SAT

SAT is at least as hard as 
all problems in NP

Once we establish the 
first "natural" NPC 
problem, others fall like 
dominoes! 3SAT

Vertex 
Cover

Graph 
ColoringMax-Cut

≤P

≤P≤P≤P ≤P
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Candidate can be evaluated 
in poly-time
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NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem 
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Genres of NP-complete problems 
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• Six basic genres of NPC problems and paradigmatic examples. 
1. Constraint satisfaction problems: SAT, 3-SAT.
2. Packing problems: SET-PACKING, INDEPENDENT SET. 
3. Covering problems: SET-COVER, VERTEX-COVER.
4. Sequencing problems: HAMILTONIAN-CYCLE, TSP. 
5. Partitioning problems: 3-COLOR, 3D-MATCHING.
6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK. 
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3SAT Problem
• We want to show that 3SAT is an NP-complete problem.
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (𝑌 ∈ NP)

Describe how a potential solution will be represented 
Describe a procedure to check whether the potential solution is a correct solution to the 
problem instance, and argue that this procedure takes polynomial time 

Step 2. Choose an NP-complete problem 𝑋.  

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3SAT

X à SAT

SAT ≤𝒑 3SAT
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Independent Set Problem
• We want to show Independent Set (IS) problem is an NPC problem
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (𝑌 ∈ NP)

Describe how a potential solution will be represented 
Describe a procedure to check whether the potential solution is a correct solution to the 
problem instance, and argue that this procedure takes polynomial time 

Step 2. Choose an NP-complete problem 𝑋.  

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à IS

X à 3SAT

3SAT ≤𝒑 IS
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3-Colorability Problem
• 3-COLOR: Given an undirected graph G does there exists a way to 

color the nodes using at most three colors (e.g., red, green, and blue) 
so that no adjacent nodes have the same color? 
• We want to show 3-COLOR problem is an NPC problem.
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (𝑌 ∈ NP)

Step 2. Choose an NP-complete problem 𝑋.  

Step 3. Prove that 𝑋 ≤" 𝑌 (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that 𝑋 𝑖 = YES ⟺ 𝑌 𝑓 𝑖 = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3-COLOR

X à 3SAT

3SAT ≤𝒑 3-COLOR
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Candidate can be evaluated 
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NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem 
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Candidate can be evaluated 
in poly-time
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NP-hard A problem 𝑌 is NP-hard if 𝑋 ≤! 𝑌 for all 𝑋 ∈ 𝐍𝐏
NP-hard problems are at least as hard as any NP problem 
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Preparation for Exam
• Suggested preparation steps: 
• Start with lecture slides, comprehend step-by-step 

solutions/algorithms.
• Make sure you have downloaded the latest version of slides. (Minor 

updates in Lec8, 9, and 10)
• Textbook suggested readings.
• Run the demo codes and print step-by-step computations/results
• Particularly, helpful for graph-related algorithms.

• Homework assignments à HW5
• Practice problems
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Final Exam: Practice Problems
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Final Exam
• Problem 1: Short Answer Questions
• Problem 2: Divide-and-Conquer
• Problem 3: Dynamic Programming
• Problem 4: Shortest Path Algorithms
• Problem 5: Graph-related (Traversal, MST, Shortest Path)
• Problem 6: Flow Network

• 80 points (+ bonus perhaps)
• Time ~120 minutes
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Final Words …
• Congratulations! We made it! 
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Design and Analysis of Algorithms
What?

Algorithms, Algorithmic paradigms; design and 
correctness
Performance analysis

Why?
Fundamental to all areas of computer science

Operating systems, Networks and distributed 
systems, Machine learning, Data science, 
Numerical computation, Cryptography, 
Computational biology, etc.

Inseparable part of every technical interview
Internship, Part-time, Full-time

Useful and Fun!
Problem solving skills
Competitive programming, Hackathons, etc.



Final Words …
• Congratulations! We made it! 
• I hope you have enjoyed the course as much as I enjoyed teaching it.
• Course materials
• Lecture notes and recordings, demo codes, assignments, and exams
• The order of the topic presented
• Covered future paths

• Theory, graduate studies, …
• Internship, fulltime jobs (SWE, PM, ML, …)

• Course website remains available through the same address.
• http://www.cs3510.com
• A summary/gist is added for future use and reference
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Final Words …
• More importantly, I hope this course has made you more interested in 

algorithm design and related topics
• Lecture notes and recording

• Course plan and roadmap 
• The recording option was not provided by CoC, but as requested by the majority, we 

did it anyway with some technical difficulties (zoom meeting, recording, YouTube 
upload, …). 

• No mandatory class attendance
• Exam and assignments

• Reduced number of assignments / adjusted workload for a summer semester
• Reduced number of problems à More practice problems
• Consistency between lecture notes, assignments, and exam problems
• Clear exam/evaluation plan
• Flexible deadlines, exam times, …
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Learning and enjoying the concepts is what 
matters most…!



Final Words …
• Please let us know what you think about the course in general, and if 

you have any comments and/or suggestions about the course materials, 
presentation, etc. 

• Course Instructor Opinion Surveys (CIOS)
• Available from 07/18 until 08/07
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Thank you!
• Algorithms are fun! 

• Amazing experience teaching this class
• Thanks to all of you and TAs
• Hope you’ve had fun and learned useful material 

• My own favorite topics in computer science
• Algorithms [along with Data Structures] 
• Machine Learning/Deep Learning 

• Stay in touch! Do not hesitate to contact me after this course
• Questions, codes, interview experiences/questions, …
• Email, personal website, LinkedIn, GitHub

• Wish you all the best for the future!
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