CS-3510:
Design and Analysis of Algorithms

NP Completeness 11

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

~ QPart 2:
.~ -Recursion
" -Divide-and-Conquer

=

-Introduction, /~ dPart 3 T
-Analysis of Algorithms . ~Dynamic Progr ammmg/)
-Asymptotic Order of Growth [

-Big-O Notation

We are here! .
OPart 7:

-NP-Completeness -

OPart 6:
-Network Flow

QPart 4:
-Greedy Algorithm

QPart 5: Graph Algorithm
- Definition, Traversal

- Grid Problems

- Minimum Spanning Tree
- Shortest Path Problem
- Topological Sorting

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Possible Worlds

/ All Problems \ / All Problems \

P#NP P=NP

Reductions

* A < B: Reduction from A to B 1s showing that we can solve A using
the algorithm that solves B

* If we have an oracle for solving B, then we can solve A by making
polynomial number of computations and polynomial number of calls
to the oracle for B

* We can transform the inputs of A to inputs of B

‘ Yes
o ﬁ Yes >
> f > Problem B
No N >
Problem A ‘ P

Polynomial Reductions

* Given two problems, A and B, we say that A 1s polynomially reducible
to B,and write it as A <, B if:

1. There exists a function f that converts the input of A to inputs of B in
polynomial time

2. A(i) = YES < B(f(i)) = YES

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Implications of Polynomial-Time Reductions

* Purpose. Classify problems according to relative difficulty.

. Desi%? algorithms. If X <, ¥ and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

* Establish intractability. If X <, ¥ and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

* Establish equivalence. If X <, V' and Y <, X , we use notation X =, V.

* Transitivity. It X <, VandV <, Z jthen X <, Z.

v
L 4

Reductions Strategies

* Given two problems, A and B, we say that A 1s polynomially reducible
to B,and write it as A <, B if:

1. There exists a function f that converts the input of A to inputs of B in
polynomial time

2. A(i) = YES & B(f(i)) = YES

* Reductions Strategies
* Reduction by simple equivalence.

* Reduction from a special case to a general case.
* Reduction by encoding with gadgets.

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 7

NP-Completeness (Formal Definition)

* Aproblem Y 1s NP-hard if X <, Y forall X € NP

* A problem 1s NP-hard if and only if a polynomial-time algorithm for it implies
a polynomial-time algorithm for every problem in NP

* NP-hard problems are at least as hard as any NP problem

* Aproblem Y 1s NP-complete if:
1. Y e NP
2. Y 1s NP-hard

NP-Complete

P = NP
= NP-Complete

https://en.wikipedia.org/wiki/P_versus_NP_problem

«o»

Establishing NP-Completeness

* Recipe to establish NP-completeness of problem Y.
* Stepl. Show that Y 1s in NP. (Y € NP)

* Describe how a potential solution will be represented

* Describe a procedure to check whether the potential solution 1s a correct solution to the
problem instance, and argue that this procedure takes polynomial time

* Step 2. Choose an NP-complete problem X.

* Step 3. Prove that X <, ¥ (X 1s poly-time reducible to Y).

* Describe a procedure f that converts the inputs 1 of X to inputs of Y in polynomial time
» Show that the reduction is correct by showing that |X(i) = YES < Y(f (i)) = YES

Note this is an “if and only if”’ condition, so proofs are needed for both directions.

|
L

The First NPC Problem

* The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook—Levin theorem)

* Satisfiability problem: given a logical expression @, find an
assignment of True/False values to binary variables x; that causes @ to
evaluate to T.

* Ex. O=x; V - x;, N\ x3 V x4

Y

The First NPC Problem

* Satisfiability problem: given a logical expression @, find an
assignment of True/False values to binary variables x; that causes @ to
evaluate to T.

* Ex. O=x; V - x, N\ x3 V x4

* SAT is in NP: given a value assignment, check the Boolean logic of @
evaluates to True (linear time)

* The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook—Levin theorem)

Y

A problem Y is NP-hard if X g, Y forall X € NP
NP-hard problems are at least as hard as any NP problem

NP-hard

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

NP-complete

Candidate can be evaluated NP
in poly-time

Solvable in poly-time P

A problem Y is NP-hard if X
NP-hard problems are at least

p Y forall X € NP
hard as any NP problem

NP-hard

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

NP-complete

All problems in NP can

; polynomially be reduced
' to SAT '

Candidate can be evaluated
in poly-time All problems in NP : :
. SAT 1s at least as hard as

 all problems in NP

Solvable in poly-time

A problem Y is NP-hard if X g, Y forall X € NP

NP-hard

NP-hard problems are at least

Vertex Graph

Mag-Lut Cover Coloring

' Once we establish the

' first "natural" NPC
 problem, others fall like
' dominoes!

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

. All problems in NP can
' polynomially be reduced |
' to SAT

=p

Candidate can be evaluated =
All problems in NP

in poly-time

SAT is at least as hard as
 all problems in NP

Solvable in poly-time

hard as any NP problem

CNF Satisfiability | 3SAT

* CNF 1s a special case of SAT

* ® 1s an “Conjunctive Normal Form” (CNF) 1f
* “AND” of expressions (1.e., clauses)
* Each clause contains only “OR”s of the variables and their negations

* Ex. D =((=xVx)N(=x1V =x:) A(=x1 V x5)

* 3SAT 1s a subcase of CNF problem, in which each cluse contains three
literals.

 Ex. D =(=x1Vx2V XNV X2V —x3) N\ (=x1V x5,V xy)
We want to show 3SAT 1s an NPC problem

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 15

3SAT Problem

* We want to show that 3SAT 1s an NP-complete problem.

Recipe to establish NP-completeness of problem Y.

Stepl. Show that Y is in NP. (Y € NP) Y = 3SAT
Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem X. X = SAT

Step 3. Prove that X <,, Y (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i1 of X to inputs of Y in polynomial time SAT =, 35AT
Show that the reduction is correct by showing that | X (i) = YES < Y(f (i)) = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 16

3SAT Problem

* (1) To show 3SAT is in NP

* A certificate 1s a truth (0/1) assignment to the variables

* Certifier: check that each clause has at least one literal set to true according to
the certificate

* (2) Choose SAT as a known NP-complete problem
* (3) Describe a reduction from SAT inputs to 3SAT inputs

* Computable in polytime
* SAT 1mput 1s satisfiable 1ff constructed 3SAT input 1s satisfiable
* (3a) Transform I. (1instance of SAT) into . (instance of 3SAT) in polynomial
time
* (3b, 3¢) Prove that I.has a solution < I. has a solution
X(i) =YES < V(f(i)) =YES

e
4

(3a) Reduction from SAT to 3SAT: I, > I,

= We are given an arbitrary CNF formula C=c;A ¢, A ... A C,, OVEr set
of variables U, this is instance |,

- each ¢ is a clause (disjunction of literals)

= We will replace each clause ¢; with a set of clauses C;', and may use
some extra variables U.' just for this clause

= Each clause in C;' will have exactly 3 literals

= Transformed input will be conjunction of all the clauses in all the C/,
this is an instance |, of 3SAT

= New clauses are carefully chosen...

Note

for SAT <, 3SAT
we need to transform
the instance of SAT

problem into the
instance of 3SAT
problem

Yes

a b —— .
— Poly-time algorithm to decide B

Poly-time algorithm to decide A

No

%> CS-3510: Design and Analysis of Algorithms | Summer 2022

18

Yes

No

(3a) Reduction from SAT to 3SAT: I, > I,

Letc.=2z,vz,Vv..Vvz (theZ's are literals
I 3) If a clause of the SAT
- Casel: k=1. problem has only one
- Eg.c=27 literal.

- Use extra variables y.! and y.2.
- Replace clause c; with 4 clauses:
(v Yyt vyd)
(z; vyt vy?)
(z, V VLV y2)
(21 v yi* v y?)
- Note that no matter what values we give the y variables, in one of the
4 clauses we will be forced to use z, to satisfy it

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

19

(3a) Reduction from SAT to 3SAT: I, > I,

Letc,=2z,vzZ, V.. Vvz
= Case 2: k=2.
- E.g.ci=2,vz,
- Use extra variable y;!.
- Replace c, with 2 clauses:
vz, vy

(zyv z; vy

If a clause of the SAT

problem has exactly
two literals.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

20

(3a) Reduction from SAT to 3SAT: I, > I,

Letc,=2z,vzZ, V.. Vvz

= Case 3: k=3.
- No extra variables are needed.
- Keep ¢;:

(z, vz, V z5)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

21

(3a) Reduction from SAT to 3SAT: I, > I,

Letc,=2z,vzZ,Vv... vz
= Case 4: k> 3.

- Use extra variables y/}, ..., y,<3.

= Replace c;with k-2 clauses:
(2,v 2, v vi1)
(V' vzzvy?) (V Zi3 Vv YY)
(V’Vzavy?d) (V i, VYY)

(VZi gV Zy)

% CS-3510: Design and Analysis of Algorithms | Summer 2022

22

(3a) Reduction from SAT to 3SAT: I, > I,

= The running time of the reduction (the algorithm to compute the

3SAT formula C', given the SAT formula C) is proportional to the size
of C'

= Rules for constructing C' are simple to calculate

So, this is a poly-time reduction.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

23

(3a) Reduction from SAT to 3SAT: I, > I,

= Original clause with 1 literal becomes 4 clauses with 3 literals each
(1 to 12 literals conversion)

= Original clause with 2 literals becomes 2 clauses with 3 literals each
(2 to 6 literals conversion)

= Original clause with 3 literals becomes 1 clause with 3 literals

= Original clause with k > 3 literals becomes k-2 clauses with 3 literals
each (k to 3(k-2) literals conversion)

= So new formula C is only a constant factor larger than the original
formula

- total L literals in formula C to cL literals in C’, where c is a constant

Size of the new
formula after
transforming an
instance of SAT to
an instance of 3SAT.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

24

(3bc) Correctness of Reduction

= Show that CNF formula C is satisfiable iff the 3-CNF formula C'
constructed is satisfiable, i.e., sol(l;) < sol(l,)

= Step 3b (=>) Suppose original CNF formula C is satisfiable, i.e., I; has (3b) sol(I,) = sol(I,)

a solution. That means it has a truth assignment A to the variables
that make the formula C evaluate to true.

= Come up with a satisfying truth assignment for the reduced 3SAT
formula C’, i.e., a solution to instance I,.
= For variables in U, use same truth assignments as for C.
- How to assign T/F to the new variables in C'?

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

25

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Let ¢, =z,
= Case 1: k=1.
= Use extra variables y;! and y;2.
- Replace c; with 4 clauses:
(Zvyivyd)
(z; Vit viy?)
(24 VTil Vy_uz)
(2 v yit v vi) Since z, is true, it does not
matter how we assign
yit and y;?

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 26

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Let ¢, = (z,V 2,)
- Case 2: k=2.
- Use extra variable y;!.
- Replace c; with 2 clauses:
(z;v 2z vyl)

(z1v 2z, vyi)

Since either z; or z, is true,
it does not matter how we
assign y;!

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

27

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Let c, = (241 Vv Z, Vv Z3)

= Case 3: k= 3.
- No extra variables are needed.
- Keep ¢;:

(Zy Vv ZyV Zg)

No new variables.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 28

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Letc,=2z,vz,Vv..VvZ
= Case 4: k>3.
- Use extra variables y?, ..., y*3.
= Replace c; with k-2 clauses:
(zy vz vy
(yivzsvy?) vV 23 v V)
(v2V 24 v V) (v v 212 v v)

(Vi3viz, vy

If first true literal is z, or z,,
set all y/'s to false:
then all later clauses have
a true literal

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

29

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Letc,=2z,vz,Vv..VvZ
= Case 4: k>3.
- Use extra variables y?, ..., y*3.
= Replace c;with k-2 clauses:
(z1vzZ; vy
(v vzzvy?) (Vi°V 2k VYY)
(v Vzg v) (Vi v 2, Vi)

(Vi°V z1 v zy)

If first true literal is z, 4 Or z,,
set all y/'s to true:
then all earlier clauses
have a true literal

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

30

(3b) sol(I,) = sol(I,): Truth Assignment for New Variables

Lletci=2z,vzZ,Vv..VvZ
= Case 4: k>3.
- Use extra variables y?, ..., y 3.
= Replace c; with k-2 clauses:
(v z, v y)
URZA% vV 2a v /)
(V7 V 24 v) (V4 21 v ¥)

(v*3vz,vz)

If first true literal is in between,
set all earlier y;'s to true
and
set all later y;'s to false

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

31

(3¢) sol(I,) = sol(I,): Correctness of Reduction

= (<=) Suppose the newly constructed 3SAT formula C' is satisfiable,
i.e., |, has a solution. We must show that the original SAT formula C
is also satisfiable, i.e., I; has a solution.

= Use the same satisfying truth assignment for C as for C' (ignoring
new variables).

= Show each original clause has at least one true literal in it.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

32

(3¢) sol(I,) = sol(I,)

Let Ci - Zl\/ Zz V..V Zk
= Case 1: k=1.

= Use extra variables y;! and y;2.
- Replace c; with 4 clauses:

(21 v Vit v y2)
(z, v Yi1 Vv Viz)

(z4 VTil VTIZ)

(z1 v yit v vid) For every assighment of y.! and y;2,
in order for all
4 clauses to have a true literal,
Z, must be true.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

33

(3¢) sol(I,) = sol(I,)

Letc,=z;vz,v.. vz,
- Case 2: k=2,
- Use extra variable y;!.
- Replace c; with 2 clauses:
(2, vz, vyi)

(z1vz, vyi)

For either assignment of y.2,
in order for both clauses
to have a true literal,

Z, Or z, must be true.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

34

(3¢) sol(I,) = sol(I,)

Letc,=2z,vzZ, V.. Vvz

= Case 3: k=3.
- No extra variables are needed.
- Keep ¢;:

(z, vz, V z5)

No new variables.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

35

(3¢) sol(I,) = sol(I,)

Letci=2vz; v.. vz Suppose in contradiction

« Case 4: k> 3. all z's are false.
- Use extra variables y?, ..., y 3.
= Replace c;with k-2 clauses:
(2, vz, vyl
(E V75V yP) (YE('S 4 vy
(Vi*V 2, vV yP) (yi*v v y¥3)

(yi3 v v 7,)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

36

(3¢) sol(I,) = sol(I,)

Letc,=2z,vz,Vv..VvZ
= Case 4: k> 3. Suppose in contradiction

|
- Use extra variables y?, ..., y*3. all z's are false.

1
- Replace c;with k-2 clauses: Then y;* must be true.

(z, vz, vvi)

(vitvz3 vy?) (Yik'5 \4 \% Vik'4)
(Vi2Vv 7z, vy?) (vt v v yi3)

(Y3 v v 7,)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

37

(3¢) sol(I,) = sol(I,)

Lletc,=z,vzZ,Vv.. vz
= Case 4: k> 3. Suppose '|n contradiction
all z's are false.

] : 1 k-3
Use extra variables y;*, ..., y;“>. Then y.! must be true, so

- Replace c;with k-2 clauses: y:2 must be true...
(v 2, vy
(v'vz,vy?) (y_i"‘5 \ AN
(y2v 2, v y3) (V4 2, v yid)

(Y3 v v 7,)

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

38

(3¢) sol(I,) = sol(I,)

Letc,=2z,vz,Vv..VvZ

= Case 4: k>3.
- Use extra variables y?, ..., y*3.
= Replace c;with k-2 clauses:

(z, vz, vvi)

(vi' v z3 vyd) (_ %
(Vi V 2, VYY) (yi“*v
(3 v

Suppose in contradiction
all z,'s are false.
Then y;! must be true, so
y:2 must be true...

\% Vik'4)
v yi3)

Vv 7)

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

39

(3¢) sol(I,) = sol(I,)

Lletc,=z,vz,v.. vz
= Case 4: k> 3. Suppose '|n contradiction
all z's are false.

] : 1 k-3
Use extra variables y;4, ..., y;“>. Then y.! must be true, so

- Replace c; with k-2 clauses: y:2 must be true...
(z,v 2, vyi)
(vi'Vvzs vy?) (Vi Vv 2,5 vy
(Vi*V z, v yP) (v*v 2, VY

(V3 v 21 v 7)

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

40

(3¢) sol(I,) = sol(I,)

letc.=2z,vz,Vv..Vv2Z
i T F1MV (%2 k Suppose in contradiction

= Case 4: k>3. all z's are false.
- Use extra variables y?, ..., y*3. Then y.! must be true, ...,
- Replace c; with k-2 clauses: Y3 must be true,

A so last clause is false.
(2.v 2, vy

(vi'vzzvy?) (V Vv yi<4)
(Vi2V iz, vyd) (Vv v yi3)

(Vi°vzi vz

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

41

Conclusion

= (1) 3SAT isin NP

= (2) We know that SAT is NPC, we want to prove that 3SAT is more
difficult than SAT, hence SAT <, 3SAT

= (3a) Take an instance I, of SAT, transform it in polynomial time into
an instance |, of 3SAT

= (3b) Show that if I, has a solution, then |, has a solution
= (3c) Show that if I, has a solution, then |, has a solution

= 3SAT is NP-complete! This is your very first NP-completeness proof.

Now you can do reductions from 3SAT.

- (All pbs in NP) <, SAT <, 3SAT

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

42

Conclusion

= (1) 3SAT isin NP

= (2) We know that SAT is NPC, we want to prove that 3SAT is more
difficult than SAT, hence SAT <, 3SAT

= (3a) Take an instance I, of SAT, transform it in polynomial time into
an instance |, of 3SAT

= (3b) Show that if I, has a solution, then |, has a solution
= (3c) Show that if I, has a solution, then |, has a solution

= 3SAT is NP-complete! This is your very first NP-completeness proof.

Now you can do reductions from 3SAT.

= (All pbsin NP) <, SAT < 3SAT

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

43

A problem Y is NP-hard if X g, Y forall X € NP

NP-hard

NP-hard problems are at least

Vertex Graph

Mag-Lut Cover Coloring

' Once we establish the

' first "natural" NPC
 problem, others fall like
' dominoes!

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

. All problems in NP can
' polynomially be reduced |
' to SAT

=p

Candidate can be evaluated =
All problems in NP

in poly-time

SAT is at least as hard as
 all problems in NP

Solvable in poly-time

hard as any NP problem

NP-hard A problem Y is NP-hard if X <, Y forall X € NP
oblems are at least as hard as any NP problem

Traveling Bin-
salesman Packing
p

roblem (TSP) \

Longest Ham- Independent Max Al
A Partit
Path Cycle Set Set Cover Clique artition
NPC ﬁam— '%aph Sul:(/
Cycle Mazta q Cover Coloring Sum

Sp ~ SP SP
3SAT
NP T
Candidate can be evaluated SAT

in poly-time <5

\\ Al probiems im NP /

N 7

Genres of NP-complete problems

* Six basic genres of NPC problems and paradigmatic examples.
Constraint satisfaction problems: SAT, 3-SAT.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.

Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3-COLOR, 3D-MATCHING.

Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Oh A TIST TSP T I [A=

Genres of NP-complete problems

* Six basic genres of NPC problems and paradigmatic examples.
Constraint satisfaction problems: SAT, 3-SAT.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.

Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3-COLOR, 3D-MATCHING.

Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Oh A TIST TSP T I [A=

Independent Set

* Independent set (IS)

* Given a graph G=(V,E), find the largest independent set: a set of vertices in the
graph with no edges between them.

* Decision version?
* Is there an independent set of at least K vertices?

Minimum / least / shortest /... => at mostk
Maximum/ greatest / longest / ...=> at leastk

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Independent Set

* We want to show Independent Set (IS) problem 1s an NPC prob

Recipe to establish NP-completeness of problem Y.

cm

Stepl. Show that Y is in NP. (Y € NP) Y=2>IS
Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem X. X = 3SAT

Step 3. Prove that X <,, Y (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i1 of X to inputs of Y in polynomial time 35AT <, IS
Show that the reduction is correct by showing that | X (i) = YES < Y(f (i)) = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 49

NP-hard A problem Y is NP-hard if X <, Y forall X € NP
oblems are at least as hard as any NP problem

Traveling Bin-
salesman Packing
p

roblem (TSP) \

Longest Ham- Independent Max Al
A Partit
Path Cycle Set Set Cover Clique artition
NPC ﬁam— '%aph Sul:(/
Cycle Mazta q Cover Coloring Sum

Sp ~ SP SP
3SAT
NP T
Candidate can be evaluated SAT

in poly-time <5

\\ Al probiems im NP /

N 7

Independent Set

* Stepl. Show that IS 1s in NP. (Y € NP)

e Certificate: A set of vertices S

* Certifier: Check size of S > K, and no pair of vertices in S is connected by an
edge, O(n+m)

 Step 2. Choose an NP-complete problem X. = 3SAT

* Step 3. Prove that 3SAT <, IS (3SAT is poly-time reducible to IS).
* Reduction by gadget

Reductions Strategies
Reduction by simple equivalence.
Reduction from a special case to a general case.
Reduction by encoding with gadgets.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 51

3SAT <, IS

- Claim. 3-5AT< p INDEPENDENT-SET.

= Pf. Given an instance @ of 3-SAT (l,), we construct an instance (G, k) of

INDEPENDENT-SET (I,) that has an independent set of size k iff @ is satisfiable.

= Construction (Step 3a)

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

- Thesize of I, is polynomial in the size of I
X

o 5 o
G L5</\
o—© o——©
X X5 X, X,
k=3 <I>=()71vx2vx3)/\(x1vx_2vx3)A(vazvx4)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

52

35AT <, IS

= Claim. @ is satisfiable iff G contains independent set of size k= | D|
= (I, has a solution < |, has a solution)

= => Given satisfying assignment (sol to |;), select one true literal from each triangle. This is
an independent set of size k, hence a sol to I,.

= <= Let S beindependent set of size k (sol. to I,)
= S must contain exactly one vertex in each triangle.
= Set these literals to true. “— and any other variables in a consistent way
= Truth assignment is consistent and all clauses are satisfied.
x| X, Xy
@ @ @
G
o—© o—© o—©
X, X5 X X5 X, Xy
k=3 (I>=()71vx2vx3)/\(x1vx_2vx3)A(vazvx4)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

53

35AT <, IS

= Claim. ® = ¢cyAcy, A -+ ¢y, is satisfiable iff G contains independent set of size k =
m

= (I, has a solution <> |, has a solution)

|1: (D=C1 /\ Co /\ /\ Cm

- .

-

= (3b) sol (I;) =>sol (I,)
» Given satisfying assignment (sol to |,),
« select exactly one true literal from each triangle and add to S (sol to 1,)
« SizeS?k =m
= Independent set?
- One node per triangle

- If there is an edge between two nodes x; and x,, withx; € Sand x, € S
- (by construction) It means that x; = x and x; = x (or reverse)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

54

35AT <, IS

l,: CD:C1 /\ C, /\ /\ C

—”.
2

-

= (3c) sol (l,) => sol (l,)
Let S be solution to IS
- We have m triangles in G, we can pick at most 1 vertexinSand |[S| >k = m
= § contains exactly one vertex per triangle
= Set the literal corresponding to each vertex in S to true
= Every clause has one true literal.
= Argue a variable is not assigned both true and false?
Let there be such variable x, then there must have been a vertex labeled x; and x; in §

By construction vertices with opposing labels x and X share and edge
— <« contradicts S being independent set m

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

55

NP-hard A problem Y is NP-hard if X <, Y forall X € NP
oblems are at least as hard as any NP problem

Traveling Bin-
salesman Packing
p

roblem (TSP) \

Longest Ham- Independent Max k|
A Partit
Path Cycle Set Set Cover Clique artition
NPC ﬁam_ '%aph Sul:(/
Cycle Mazta q Cover Coloring Sum

Sp ~ SP SP
3SAT
NP 1 <p
Candidate can be evaluated SAT

in poly-time <5

\\ Al probiems im NP /

N 7

Genres of NP-complete problems

* Six basic genres of NPC problems and paradigmatic examples.
Constraint satisfaction problems: SAT, 3-SAT.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.

Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3-COLOR, 3D-MATCHING.

Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Oh A TIST TSP T I [A=

Graph Coloring: 3-Colorability

* Map Coloring

* Given a map, can it be colored using 3 colors so that no adjacent states
(regions) have the same color?

* Four color theorem, or the four-color map theorem: We need no more than
four colors to color the regions of any map so that no two adjacent regions
have the same color. (Every planar map can be colored with four colors)

* However, deciding whether an arbitrary planar map can be colored with just
three colors 1s an NPC problem.

Y

Graph Coloring: 3-Colorability

* Map Coloring

* Given a map, can it be colored using 3 colors so

that no adjacent states (regions) have the same Odd number of
color? adjacent states

* Four color theorem, or the four-color map
theorem: We need no more than four colors to
color the regions of any map so that no two
adjacent regions have the same color. (Every
planar map can be colored with four colors)

* However, deciding whether an arbitrary planar

map can be colored with just three colors 1s an
NPC problem.

https://en.wikipedia.org/wiki/Four_color_theorem

Even number of
adjacent states

US states map needs at least four colors

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

59

Graph Coloring: 3-Colorability

* Graph Coloring

* Each region is represented by a node 1n a graph;
if 2 regions have a common boundary represent
this by an edge between them. So, we wish to
assign colors to the nodes so that no two nodes
have the same color 1f there 1s an edge between

them

Petersen graph
https://en.wikipedia.org/wiki/Graph_coloring

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

60

Graph Coloring: 3-Colorability

* Graph Coloring

* We seek to assign a color to each node of a graph G so that if (u,v) 1s an edge,
then u and v are assigned different colors; and the goal is to do this while using
the smallest set of colors

* A k-coloring of G 1s a function f: V > {1, 2, ..., k} so that for every edge (u,v),
we have f(u) # f(v).

* If G has a k-coloring, we say that 1t 1s a k-colorable graph

* Decision version: Given a graph G and a bound k, does G have a k-
coloring?

Y

Graph Coloring: 3-Colorability

* Graph Coloring

* We seek to assign a color to each node of a graph G so that if (u,v) 1s an edge,
then u and v are assigned different colors; and the goal is to do this while using
the smallest set of colors

* A k-coloring of G 1s a function f: V > {1, 2, ..., k} so that for every edge (u,v),
we have f(u) # f(v).

* If G has a k-coloring, we say that 1t 1s a k-colorable graph

* Decision version: Given a graph G and a bound k, does G have a k-

coloring?

Side note regarding 4-coloring problem (k=4)
* Planar graphs/maps

* Problem over a century
* Resolved in 1976 by Appel and Haken

Y

Induction on the number of the regions
But the induction step involved nearly 2000 complicated

3-Colorability

* 3—COLOR: Given an undirected graph G does there exists a way to
color the nodes using at most three colors (e.g., red, green, and blue)

so that no adjacent nodes have the same color?
* We want to show 3—-COLOR problem 1s an NPC problem.

Recipe to establish NP-completeness of problem Y.
Stepl. Show that Y is in NP. (Y € NP)

Step 2. Choose an NP-complete problem X.

Step 3. Prove that X <, Y (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs 1 of X to inputs of Y in polynomial time

Show that the reduction is correct by showing that | X (i) = YES < Y(f (i)) = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.

Y = 3-COLOR

X = 3SAT

3SAT <, 3-COLOR

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

63

3SAT <, 3-COLOR

= Claim: 3-SAT < 3-COLOR
= Pf: Given 3-SAT instance @ (l,), we construct an instance I, of 3-
COLOR such that @ is satisfiable iff 3-colorable

= Construction
» Create 3 new nodes T, F, B; connect them in a triangle (True, False, and Base)
« For each literal, create a node
« Connect each literal to B (i.e., every literal will have to be colored same as T or F)
« Connect each literal to its negation (literals of same var cannot be same color)
« For each clause, add gadget of 6 nodes and 13 edges as in next slide

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

64

3SAT <, 3-COLOR

false

F

B base

P T e LN

6-node gadget

 —2 —°
O

C.

=X V x, V x5

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

65

3SAT <, 3-COLOR

= Claim. @ is satisfiable (sol(l,)) iff graph is 3-colorable (sol(l,))

= Pf. = Suppose 3-SAT formula ® is satisfiable.
Color all nodes of true literals in the satisfying assignment with color T.

Then at least one literal in each clause is true, hence colored T/green
Color node below T/green node F/red, and node below that B/blue.
Color remaining middle row nodes B/blue.

Color remaining bottom nodes T/green or F/red as forced. =

a literal set to true in 3-SAT assignment

FS & & 5
; @ \ \ @ -

% CS-3510: Design and Analysis of Algorithms | Summer 2022

66

3SAT <, 3-COLOR

= Claim. @ is satisfiable (sol(l,)) iff graph is 3-colorable (sol(l,))

= Pf. < Suppose graph is 3-colorable.
- Consider assignment that sets all T-colored literals to true.
= (i) ensures each literal is True or False.
- (ii) ensures a literal and its negation are opposites.

= (iii) ensures at least one literal in each clause is T (let’s see why).

il 2 %3 C,=x, Vx, Vx,
6-node gadget

J e e

N) N o=
:) G) @ -

% CS-3510: Design and Analysis of Algorithms | Summer 2022

67

3SAT <, 3-COLOR

= Claim. @ is satisfiable (sol(l,)) iff graph is 3-colorable (sol(l,))

= Pf. <= Suppose graph is 3-colorable.
= Consider assignment that sets all T-colored literals to true.
« (i) ensures each literal is True or False.
- (ii) ensures a literal and its negation are opposites.

= (iii) ensures at least one literal in each clause is T (let’s see why).

For the sake of contradiction assume there is
unsatisfied clause
Then all nodes of literals in the clause are red

/

c=x; V x, Vx5

;'/‘ contradiction

true &)) G false

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

68

NP-hard A problem Y is NP-hard if X <, Y forall X € NP
oblems are at least as hard as any NP problem

Traveling Bin-
salesman Packing
p

roblem (TSP) \

Longest Ham- Independent Max k|
A Partit
Path Cycle Set Set Cover Clique artition
NPC ﬁam_ '%aph Sul:(/
Cycle Mazta q Cover Coloring Sum

Sp ~ SP SP
3SAT
NP 1 <p
Candidate can be evaluated SAT

in poly-time <5

\\ Al probiems im NP /

N 7

Coping with NP-completeness

Exact solution
* Brute force = It will always explore all search space

* Branch and bound = Create an algorithm with running time exponential in the input size (but which might do
well on the inputs you use)

Parameterized algorithms

* Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the
entire input size but just on some parameter that is hopefully small

Approximation
* Quickly find a solution that is provably not very bad

Local search

* Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in
practice on real problem 1nstances3,

Restriction
* By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible.

Randomization

» Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some
small probability.

e
4

Coping with NP-completeness

« Exact solution (Sacrifice running time)
* Brute force = It will always explore all search space

* Branch and bound = Create an algorithm with running time exponential in the input size (but which might do
well on the inputs you use)

* Parameterized algorithms (Sacrifice running time)

* Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the
entire input size but just on some parameter that is hopefully small

* Approximation (Sacrifice quality)
* Quickly find a solution that is provably not very bad

* Local search

* Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in
practice on real problem 1nstances¥

* Restriction
* By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible.

* Randomization

» Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some
small probability.

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 71

Interested to Know More?

* Here, we have just scratched the surface!

Chapter 34:
NPC

Chapter 35:
Approximation

Chapter 8: NPC
Chapter 9-13: Coping with NPC
(Approximation, local search,
randomized algorithms, etc.)

A GUIDE TO

ALGORITHM

Chapter 8: NPC
Chapter 9: Coping with NPC

Part II: NPC and beyond

Chapter 6: NPC
Chapter 7: NPC Exercises
Chapter 8: Beyond NPC

Chapter 9: Beyond NPC Exercises

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

72

Roadmap

~ QPart 2:
.~ -Recursion
" -Divide-and-Conquer

=

QPart 1:
-Introduction, | /~ QPart 3: N
-Analysis of Algorithms \ . -Dynamic Programming
-Asymptotic Order of Growth N

-Big-O Notation

OPart 6:
-Network Flow

OPart 7:
-NP-Completeness

We are here!

- Definition, Traversal
- Grid Problems

QPart 4:
-Greedy Algorithm

QPart 5: Graph Algorithm

- Minimum Spanning Tree
- Shortest Path Problem
- Topological Sorting

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

73

References

* The lecture slides are heavily based on the suggested textbooks and the corresponding published
lecture notes:

» Slides by Umit Catalyurek, Georgia Institute of Technology.
(Based on slides by Bistra Dilkina, Anne Benoit, Jennifer Welch, George Bebis, and Kevin Wayne)

 CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

» KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

74

http://www.cs3510.com/policies/

