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Possible Worlds 
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All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC



Reductions 

• ! ≤ #: Reduction from A to B is showing that we can solve A using 
the algorithm that solves B 

• If we have an oracle for solving B, then we can solve A by making 
polynomial number of computations and polynomial number of calls 
to the oracle for B 

• We can transform the inputs of A to inputs of B  
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! Problem B

Problem A

! " YesYes

No No



Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as ! ≤! # if:

1. There exists a function ! that converts the input of A to inputs of B in 
polynomial time 

2. " # = YES ⟺ ) ! # = YES
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Implications of Polynomial-Time Reductions 
• Purpose. Classify problems according to relative difficulty. 

• Design algorithms. If ! ≤! # and Y can be solved in polynomial-time, 
then X can also be solved in polynomial time. 

• Establish intractability. If ! ≤! # and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time. 

• Establish equivalence. If ! ≤! # and # ≤! ! , we use notation ! ≡! #. 

• Transitivity. If ! ≤! # and # ≤! % ,then ! ≤! %. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 6



Reductions Strategies
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as ! ≤! # if:
1. There exists a function ! that converts the input of A to inputs of B in 

polynomial time 
2. " # = YES ⟺ ) ! # = YES

• Reductions Strategies
• Reduction by simple equivalence.
• Reduction from a special case to a general case. 
• Reduction by encoding with gadgets. 
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NP-Completeness (Formal Definition)

• A problem % is NP-hard if & ≤! % for all & ∈ ()
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies 

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem 

• A problem Y is NP-complete if: 
1. , ∈ NP
2. , is NP-hard
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https://en.wikipedia.org/wiki/P_versus_NP_problem



Establishing NP-Completeness 

• Recipe to establish NP-completeness of problem Y. 
• Step1. Show that Y is in NP.  (, ∈ NP)

• Describe how a potential solution will be represented 
• Describe a procedure to check whether the potential solution is a correct solution to the 

problem instance, and argue that this procedure takes polynomial time 

• Step 2. Choose an NP-complete problem /.  

• Step 3. Prove that / ≤! , (X is poly-time reducible to Y). 
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
• Show that the reduction is correct by showing that " # = YES ⟺ ) * # = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.
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The First NPC Problem

• The satisfiability (SAT) problem was the first problem shown to be 
NP-complete (Cook–Levin theorem)

• Satisfiability problem: given a logical expression Φ, find an 
assignment of True/False values to binary variables ++ that causes Φ to 
evaluate to T.

• Ex.                        Φ = +, ⋁ ¬+- ⋀ +. ⋁ ¬+/
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The First NPC Problem

• Satisfiability problem: given a logical expression Φ, find an 
assignment of True/False values to binary variables ++ that causes Φ to 
evaluate to T.

• Ex.                        Φ = +, ⋁ ¬+- ⋀ +. ⋁ ¬+/
• SAT is in NP: given a value assignment, check the Boolean logic of Φ

evaluates to True (linear time) 

• The satisfiability (SAT) problem was the first problem shown to be 
NP-complete (Cook–Levin theorem)
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PSolvable in poly-time

Candidate can be evaluated 
in poly-time

NP

NP-complete

NP-hard
A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem 

A problem Y is NP-complete if: 
1. Y ∈ NP
2. Y is NP-hard
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PSolvable in poly-time
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A problem Y is NP-complete if: 
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CNF Satisfiability | 3SAT 

• CNF is a special case of SAT 

• Φ is an “Conjunctive Normal Form” (CNF) if
• “AND” of expressions (i.e., clauses)
• Each clause contains only “OR”s of the variables and their negations

• Ex.             Φ = (¬+, ⋁ +-) ⋀ (¬+, ⋁ ¬+-) ⋀ (¬+, ⋁ +-)

• 3SAT is a subcase of CNF problem, in which each cluse contains three 
literals. 

• Ex.       Φ = (¬+, ⋁ +- ⋁ +/) ⋀ (+,⋁ +- ⋁ ¬+.) ⋀ (¬+,⋁ +- ⋁ +/)
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We want to show 3SAT is an NPC problem 



3SAT Problem

• We want to show that 3SAT is an NP-complete problem.
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (" ∈ NP)

Describe how a potential solution will be represented 
Describe a procedure to check whether the potential solution is a correct solution to the 
problem instance, and argue that this procedure takes polynomial time 

Step 2. Choose an NP-complete problem $.  

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3SAT

X à SAT

SAT ≤" 3SAT



3SAT Problem

• (1) To show 3SAT is in NP 
• A certificate is a truth (0/1) assignment to the variables 
• Certifier: check that each clause has at least one literal set to true according to 

the certificate 
• (2) Choose SAT as a known NP-complete problem 

• (3) Describe a reduction from SAT inputs to 3SAT inputs 
• Computable in polytime
• SAT input is satisfiable iff constructed 3SAT input is satisfiable 
• (3a) Transform I1 (instance of SAT) into I2 (instance of 3SAT) in polynomial 

time 
• (3b, 3c) Prove that I1 has a solution ⟺ I2  has a solution 
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(3a) Reduction from SAT to 3SAT: I1 à I2
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Note
for SAT ≤" 3SAT 
we need to transform 
the instance of SAT 
problem into the 
instance of 3SAT 
problem

, Poly-time algorithm to decide B

Poly-time algorithm to decide A

1 2 YesYes

No No



(3a) Reduction from SAT to 3SAT: I1 à I2
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If a clause of the SAT 
problem has only one 
literal.



(3a) Reduction from SAT to 3SAT: I1 à I2
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If a clause of the SAT 
problem has exactly 
two literals.



(3a) Reduction from SAT to 3SAT: I1 à I2
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(3a) Reduction from SAT to 3SAT: I1 à I2
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(3a) Reduction from SAT to 3SAT: I1 à I2
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So, this is a poly-time reduction.



(3a) Reduction from SAT to 3SAT: I1 à I2
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Size of the new 
formula after 
transforming an 
instance of SAT to 
an instance of 3SAT.



(3bc) Correctness of Reduction 
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(3b) sol(I1) ⇒ sol(I2)



(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables
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(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 27



(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables
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(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables
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(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables
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(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables
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(3c) sol(I2) ⇒ sol(I1): Correctness of Reduction
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)
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(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 40



(3c) sol(I2) ⇒ sol(I1)
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Conclusion 
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Conclusion 
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Genres of NP-complete problems 
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• Six basic genres of NPC problems and paradigmatic examples. 

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET. 

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK. 



Genres of NP-complete problems 
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• Six basic genres of NPC problems and paradigmatic examples. 

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET. 

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK. 



Independent Set

• Independent set (IS) 
• Given a graph G=(V,E), find the largest independent set: a set of vertices in the 

graph with no edges between them. 
• Decision version? 
• Is there an independent set of at least K vertices? 
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Minimum / least / shortest /…     à at most k
Maximum/ greatest / longest / …à at least k



Independent Set

• We want to show Independent Set (IS) problem is an NPC problem
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (" ∈ NP)

Describe how a potential solution will be represented 
Describe a procedure to check whether the potential solution is a correct solution to the 
problem instance, and argue that this procedure takes polynomial time 

Step 2. Choose an NP-complete problem $.  

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à IS

X à 3SAT

3SAT ≤" IS



CS-3510: Design and Analysis of Algorithms   |   Summer 2022 50

Candidate can be evaluated 
in poly-time

NP

NPC

NP-hard A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem 

SAT
≤P

All problems in NP

3SAT

Vertex 
Cover

Graph 
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset 
Sum

Dir-Ham-
Cycle

Longest 
Path

Ham-
Cycle

Traveling 
salesman 

problem (TSP)

Independent 
Set Set Cover

Max 
Clique Partition

Bin-
Packing



Independent Set
• Step1. Show that IS is in NP.  (% ∈ NP)
• Certificate: A set of vertices S 
• Certifier: Check size of S ≥ K, and no pair of vertices in S is connected by an 

edge, O(n+m) 
• Step 2. Choose an NP-complete problem &.  à 3SAT
• Step 3. Prove that 33!4 ≤! 53 (3SAT is poly-time reducible to IS). 
• Reduction by gadget
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Reductions Strategies
Reduction by simple equivalence.
Reduction from a special case to a general case. 
Reduction by encoding with gadgets.



3SAT ≤! IS
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3SAT ≤! IS
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3SAT ≤! IS
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3SAT ≤! IS
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Genres of NP-complete problems 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 57

• Six basic genres of NPC problems and paradigmatic examples. 

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET. 

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK. 



Graph Coloring: 3-Colorability

• Map Coloring 
• Given a map, can it be colored using 3 colors so that no adjacent states 

(regions) have the same color? 

• Four color theorem, or the four-color map theorem: We need no more than 
four colors to color the regions of any map so that no two adjacent regions 
have the same color. (Every planar map can be colored with four colors)

• However, deciding whether an arbitrary planar map can be colored with just 
three colors is an NPC problem.
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Graph Coloring: 3-Colorability
• Map Coloring 

• Given a map, can it be colored using 3 colors so 
that no adjacent states (regions) have the same 
color? 

• Four color theorem, or the four-color map 
theorem: We need no more than four colors to 
color the regions of any map so that no two 
adjacent regions have the same color. (Every 
planar map can be colored with four colors)

• However, deciding whether an arbitrary planar 
map can be colored with just three colors is an 
NPC problem.
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https://en.wikipedia.org/wiki/Four_color_theorem

Even number of 
adjacent states

Odd number of 
adjacent states

US states map needs at least four colors



Graph Coloring: 3-Colorability

• Graph Coloring 
• Each region is represented by a node in a graph; 

if 2 regions have a common boundary represent 
this by an edge between them. So, we wish to 
assign colors to the nodes so that no two nodes 
have the same color if there is an edge between 
them 
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https://en.wikipedia.org/wiki/Graph_coloring
Petersen graph



Graph Coloring: 3-Colorability

• Graph Coloring 
• We seek to assign a color to each node of a graph G so that if (u,v) is an edge, 

then u and v are assigned different colors; and the goal is to do this while using 
the smallest set of colors 
• A k-coloring of G is a function f: V à {1, 2, ..., k} so that for every edge (u,v), 

we have f(u) ≠ f(v). 
• If G has a k-coloring, we say that it is a k-colorable graph 

• Decision version: Given a graph G and a bound k, does G have a k-
coloring? 
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Graph Coloring: 3-Colorability

• Graph Coloring 
• We seek to assign a color to each node of a graph G so that if (u,v) is an edge, 

then u and v are assigned different colors; and the goal is to do this while using 
the smallest set of colors 
• A k-coloring of G is a function f: V à {1, 2, ..., k} so that for every edge (u,v), 

we have f(u) ≠ f(v). 
• If G has a k-coloring, we say that it is a k-colorable graph 

• Decision version: Given a graph G and a bound k, does G have a k-
coloring? 
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Side note regarding 4-coloring problem (k=4)
• Planar graphs/maps
• Problem over a century
• Resolved in 1976 by Appel and Haken

• Induction on the number of the regions 
• But the induction step involved nearly 2000 complicated



3-Colorability
• 3-COLOR: Given an undirected graph G does there exists a way to 

color the nodes using at most three colors (e.g., red, green, and blue) 
so that no adjacent nodes have the same color? 
• We want to show 3-COLOR problem is an NPC problem.
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Recipe to establish NP-completeness of problem Y. 
Step1. Show that Y is in NP.  (" ∈ NP)

Step 2. Choose an NP-complete problem $.  

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y). 
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3-COLOR

X à 3SAT

3SAT ≤" 3-COLOR



3SAT ≤" 3−COLOR
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3SAT ≤" 3−COLOR
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3SAT ≤" 3−COLOR
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3SAT ≤" 3−COLOR
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3SAT ≤" 3−COLOR
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Coping with NP-completeness 
• Exact solution 

• Brute force à It will always explore all search space
• Branch and bound à Create an algorithm with running time exponential in the input size (but which might do 

well on the inputs you use) 
• Parameterized algorithms 

• Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the 
entire input size but just on some parameter that is hopefully small 

• Approximation
• Quickly find a solution that is provably not very bad

• Local search 
• Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in 

practice on real problem instances) 
• Restriction

• By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible. 
• Randomization

• Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some 
small probability.  
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Coping with NP-completeness 
• Exact solution (Sacrifice running time)

• Brute force à It will always explore all search space
• Branch and bound à Create an algorithm with running time exponential in the input size (but which might do 

well on the inputs you use) 
• Parameterized algorithms (Sacrifice running time)

• Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the 
entire input size but just on some parameter that is hopefully small 

• Approximation (Sacrifice quality)
• Quickly find a solution that is provably not very bad

• Local search 
• Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in 

practice on real problem instances) 
• Restriction

• By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible. 
• Randomization

• Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some 
small probability.  
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Interested to Know More?

• Here, we have just scratched the surface!
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Chapter 34: 
NPC

Chapter 35: 
Approximation

Chapter 8: NPC
Chapter 9-13: Coping with NPC
(Approximation, local search, 
randomized algorithms, etc.)

Chapter 8: NPC
Chapter 9: Coping with NPC

Part II: NPC and beyond

Chapter 6: NPC
Chapter 7: NPC  Exercises
Chapter 8: Beyond NPC
Chapter 9: Beyond NPC Exercises



Roadmap

73CS-3510: Design and Analysis of Algorithms   |   Summer 2022

We are here!
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