
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

NP Completeness II

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Possible Worlds

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC

Reductions

• ! ≤ #: Reduction from A to B is showing that we can solve A using
the algorithm that solves B

• If we have an oracle for solving B, then we can solve A by making
polynomial number of computations and polynomial number of calls
to the oracle for B

• We can transform the inputs of A to inputs of B

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

! Problem B

Problem A

! " YesYes

No No

Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as ! ≤! # if:

1. There exists a function ! that converts the input of A to inputs of B in
polynomial time

2. " # = YES ⟺) ! # = YES

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Implications of Polynomial-Time Reductions
• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If ! ≤! # and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

• Establish intractability. If ! ≤! # and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

• Establish equivalence. If ! ≤! # and # ≤! ! , we use notation ! ≡! #.

• Transitivity. If ! ≤! # and # ≤! % ,then ! ≤! %.

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Reductions Strategies
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as ! ≤! # if:
1. There exists a function ! that converts the input of A to inputs of B in

polynomial time
2. " # = YES ⟺) ! # = YES

• Reductions Strategies
• Reduction by simple equivalence.
• Reduction from a special case to a general case.
• Reduction by encoding with gadgets.

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

NP-Completeness (Formal Definition)

• A problem % is NP-hard if & ≤! % for all & ∈ ()
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem

• A problem Y is NP-complete if:
1. , ∈ NP
2. , is NP-hard

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

https://en.wikipedia.org/wiki/P_versus_NP_problem

Establishing NP-Completeness

• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (, ∈ NP)

• Describe how a potential solution will be represented
• Describe a procedure to check whether the potential solution is a correct solution to the

problem instance, and argue that this procedure takes polynomial time

• Step 2. Choose an NP-complete problem /.

• Step 3. Prove that / ≤! , (X is poly-time reducible to Y).
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
• Show that the reduction is correct by showing that " # = YES ⟺) * # = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

The First NPC Problem

• The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook–Levin theorem)

• Satisfiability problem: given a logical expression Φ, find an
assignment of True/False values to binary variables ++ that causes Φ to
evaluate to T.

• Ex. Φ = +, ⋁ ¬+- ⋀ +. ⋁ ¬+/

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

The First NPC Problem

• Satisfiability problem: given a logical expression Φ, find an
assignment of True/False values to binary variables ++ that causes Φ to
evaluate to T.

• Ex. Φ = +, ⋁ ¬+- ⋀ +. ⋁ ¬+/
• SAT is in NP: given a value assignment, check the Boolean logic of Φ

evaluates to True (linear time)

• The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook–Levin theorem)

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NP-complete

NP-hard
A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NP-complete

NP-hard
A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard
A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

Once we establish the
first "natural" NPC
problem, others fall like
dominoes! 3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P≤P ≤P

CNF Satisfiability | 3SAT

• CNF is a special case of SAT

• Φ is an “Conjunctive Normal Form” (CNF) if
• “AND” of expressions (i.e., clauses)
• Each clause contains only “OR”s of the variables and their negations

• Ex. Φ = (¬+, ⋁ +-) ⋀ (¬+, ⋁ ¬+-) ⋀ (¬+, ⋁ +-)

• 3SAT is a subcase of CNF problem, in which each cluse contains three
literals.

• Ex. Φ = (¬+, ⋁ +- ⋁ +/) ⋀ (+,⋁ +- ⋁ ¬+.) ⋀ (¬+,⋁ +- ⋁ +/)

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

We want to show 3SAT is an NPC problem

3SAT Problem

• We want to show that 3SAT is an NP-complete problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (" ∈ NP)

Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem $.

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3SAT

X à SAT

SAT ≤" 3SAT

3SAT Problem

• (1) To show 3SAT is in NP
• A certificate is a truth (0/1) assignment to the variables
• Certifier: check that each clause has at least one literal set to true according to

the certificate
• (2) Choose SAT as a known NP-complete problem

• (3) Describe a reduction from SAT inputs to 3SAT inputs
• Computable in polytime
• SAT input is satisfiable iff constructed 3SAT input is satisfiable
• (3a) Transform I1 (instance of SAT) into I2 (instance of 3SAT) in polynomial

time
• (3b, 3c) Prove that I1 has a solution ⟺ I2 has a solution

CS-3510: Design and Analysis of Algorithms | Summer 2022 17
/ # = YES ⟺ , ! # = YES

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Note
for SAT ≤" 3SAT
we need to transform
the instance of SAT
problem into the
instance of 3SAT
problem

, Poly-time algorithm to decide B

Poly-time algorithm to decide A

1 2 YesYes

No No

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

If a clause of the SAT
problem has only one
literal.

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

If a clause of the SAT
problem has exactly
two literals.

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

So, this is a poly-time reduction.

(3a) Reduction from SAT to 3SAT: I1 à I2

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Size of the new
formula after
transforming an
instance of SAT to
an instance of 3SAT.

(3bc) Correctness of Reduction

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

(3b) sol(I1) ⇒ sol(I2)

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

(3b) sol(I1) ⇒ sol(I2): Truth Assignment for New Variables

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

(3c) sol(I2) ⇒ sol(I1): Correctness of Reduction

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

(3c) sol(I2) ⇒ sol(I1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Conclusion

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Conclusion

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard
A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

Once we establish the
first "natural" NPC
problem, others fall like
dominoes! 3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P≤P ≤P

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Genres of NP-complete problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

• Six basic genres of NPC problems and paradigmatic examples.

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET.

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP.

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Genres of NP-complete problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

• Six basic genres of NPC problems and paradigmatic examples.

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET.

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP.

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Independent Set

• Independent set (IS)
• Given a graph G=(V,E), find the largest independent set: a set of vertices in the

graph with no edges between them.
• Decision version?
• Is there an independent set of at least K vertices?

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Minimum / least / shortest /… à at most k
Maximum/ greatest / longest / …à at least k

Independent Set

• We want to show Independent Set (IS) problem is an NPC problem

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (" ∈ NP)

Describe how a potential solution will be represented
Describe a procedure to check whether the potential solution is a correct solution to the
problem instance, and argue that this procedure takes polynomial time

Step 2. Choose an NP-complete problem $.

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à IS

X à 3SAT

3SAT ≤" IS

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Independent Set
• Step1. Show that IS is in NP. (% ∈ NP)
• Certificate: A set of vertices S
• Certifier: Check size of S ≥ K, and no pair of vertices in S is connected by an

edge, O(n+m)
• Step 2. Choose an NP-complete problem &. à 3SAT
• Step 3. Prove that 33!4 ≤! 53 (3SAT is poly-time reducible to IS).
• Reduction by gadget

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Reductions Strategies
Reduction by simple equivalence.
Reduction from a special case to a general case.
Reduction by encoding with gadgets.

3SAT ≤! IS

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

3SAT ≤! IS

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

3SAT ≤! IS

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

3SAT ≤! IS

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Genres of NP-complete problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

• Six basic genres of NPC problems and paradigmatic examples.

1. Constraint satisfaction problems: SAT, 3-SAT.

2. Packing problems: SET-PACKING, INDEPENDENT SET.

3. Covering problems: SET-COVER, VERTEX-COVER.

4. Sequencing problems: HAMILTONIAN-CYCLE, TSP.

5. Partitioning problems: 3-COLOR, 3D-MATCHING.

6. Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Graph Coloring: 3-Colorability

• Map Coloring
• Given a map, can it be colored using 3 colors so that no adjacent states

(regions) have the same color?

• Four color theorem, or the four-color map theorem: We need no more than
four colors to color the regions of any map so that no two adjacent regions
have the same color. (Every planar map can be colored with four colors)

• However, deciding whether an arbitrary planar map can be colored with just
three colors is an NPC problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

Graph Coloring: 3-Colorability
• Map Coloring

• Given a map, can it be colored using 3 colors so
that no adjacent states (regions) have the same
color?

• Four color theorem, or the four-color map
theorem: We need no more than four colors to
color the regions of any map so that no two
adjacent regions have the same color. (Every
planar map can be colored with four colors)

• However, deciding whether an arbitrary planar
map can be colored with just three colors is an
NPC problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

https://en.wikipedia.org/wiki/Four_color_theorem

Even number of
adjacent states

Odd number of
adjacent states

US states map needs at least four colors

Graph Coloring: 3-Colorability

• Graph Coloring
• Each region is represented by a node in a graph;

if 2 regions have a common boundary represent
this by an edge between them. So, we wish to
assign colors to the nodes so that no two nodes
have the same color if there is an edge between
them

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

https://en.wikipedia.org/wiki/Graph_coloring
Petersen graph

Graph Coloring: 3-Colorability

• Graph Coloring
• We seek to assign a color to each node of a graph G so that if (u,v) is an edge,

then u and v are assigned different colors; and the goal is to do this while using
the smallest set of colors
• A k-coloring of G is a function f: V à {1, 2, ..., k} so that for every edge (u,v),

we have f(u) ≠ f(v).
• If G has a k-coloring, we say that it is a k-colorable graph

• Decision version: Given a graph G and a bound k, does G have a k-
coloring?

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

Graph Coloring: 3-Colorability

• Graph Coloring
• We seek to assign a color to each node of a graph G so that if (u,v) is an edge,

then u and v are assigned different colors; and the goal is to do this while using
the smallest set of colors
• A k-coloring of G is a function f: V à {1, 2, ..., k} so that for every edge (u,v),

we have f(u) ≠ f(v).
• If G has a k-coloring, we say that it is a k-colorable graph

• Decision version: Given a graph G and a bound k, does G have a k-
coloring?

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

Side note regarding 4-coloring problem (k=4)
• Planar graphs/maps
• Problem over a century
• Resolved in 1976 by Appel and Haken

• Induction on the number of the regions
• But the induction step involved nearly 2000 complicated

3-Colorability
• 3-COLOR: Given an undirected graph G does there exists a way to

color the nodes using at most three colors (e.g., red, green, and blue)
so that no adjacent nodes have the same color?
• We want to show 3-COLOR problem is an NPC problem.

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

Recipe to establish NP-completeness of problem Y.
Step1. Show that Y is in NP. (" ∈ NP)

Step 2. Choose an NP-complete problem $.

Step 3. Prove that $ ≤! " (X is poly-time reducible to Y).
Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
Show that the reduction is correct by showing that $ & = YES ⟺ " , & = YES
Note this is an “if and only if” condition, so proofs are needed for both directions.

Y à 3-COLOR

X à 3SAT

3SAT ≤" 3-COLOR

3SAT ≤" 3−COLOR

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

3SAT ≤" 3−COLOR

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

3SAT ≤" 3−COLOR

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

3SAT ≤" 3−COLOR

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

3SAT ≤" 3−COLOR

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard A problem ! is NP-hard if " ≤! ! for all " ∈ %&
NP-hard problems are at least as hard as any NP problem

SAT
≤P

All problems in NP

3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P
≤P ≤P

Subset
Sum

Dir-Ham-
Cycle

Longest
Path

Ham-
Cycle

Traveling
salesman

problem (TSP)

Independent
Set Set Cover

Max
Clique Partition

Bin-
Packing

Coping with NP-completeness
• Exact solution

• Brute force à It will always explore all search space
• Branch and bound à Create an algorithm with running time exponential in the input size (but which might do

well on the inputs you use)
• Parameterized algorithms

• Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the
entire input size but just on some parameter that is hopefully small

• Approximation
• Quickly find a solution that is provably not very bad

• Local search
• Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in

practice on real problem instances)
• Restriction

• By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible.
• Randomization

• Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some
small probability.

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

Coping with NP-completeness
• Exact solution (Sacrifice running time)

• Brute force à It will always explore all search space
• Branch and bound à Create an algorithm with running time exponential in the input size (but which might do

well on the inputs you use)
• Parameterized algorithms (Sacrifice running time)

• Allow the running time to have an exponential factor, but ensure that the exponential dependence is not on the
entire input size but just on some parameter that is hopefully small

• Approximation (Sacrifice quality)
• Quickly find a solution that is provably not very bad

• Local search
• Quickly find a solution for which you cannot give any quality guarantee (but which might often be good in

practice on real problem instances)
• Restriction

• By restricting the structure of the input (e.g., to planar graphs, 2SAT), faster algorithms are usually possible.
• Randomization

• Use randomness to get a faster average running time and allow the algorithm to fail to find optimum with some
small probability.

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

Interested to Know More?

• Here, we have just scratched the surface!

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

Chapter 34:
NPC

Chapter 35:
Approximation

Chapter 8: NPC
Chapter 9-13: Coping with NPC
(Approximation, local search,
randomized algorithms, etc.)

Chapter 8: NPC
Chapter 9: Coping with NPC

Part II: NPC and beyond

Chapter 6: NPC
Chapter 7: NPC Exercises
Chapter 8: Beyond NPC
Chapter 9: Beyond NPC Exercises

Roadmap

73CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• Slides by Umit Catalyurek, Georgia Institute of Technology.
(Based on slides by Bistra Dilkina, Anne Benoit, Jennifer Welch, George Bebis, and Kevin Wayne)

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

74CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

