
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

NP Completeness I

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

NP-Completeness
• So far, we have seen a lot of good news!
• Problems can be solved quickly/efficiently (i.e., linear time, or at least a time

that is some small polynomial function of the input size)

• NP-completeness is a form of bad news!
• There exist many important problems that cannot be solved quickly.

• NP-complete problems really come up all the time!

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

NP-Completeness
• Why should we care?
• Knowing that they are hard lets you stop beating your head against a wall

trying to solve them!

• Restrict the problem: find special restrictions/variants to the problem for
which there is a polynomial time algorithm.
• Use a heuristic: come up with a method for solving a reasonable fraction of

the common cases.
• Solve approximately: come up with a method that finds solutions provably

close to the optimal.
• Use an exponential time solution: if you really have to solve the problem

exactly and stop worrying about finding a better solution.

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Optimization vs. Decision Problems
• Decision problems
• Given an input and a question regarding a problem, determine if the answer is

yes or no

• Optimization problems
• Find a solution with the “best” value

• Optimization problems can be cast as decision problems that are easier
to study

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Optimization vs. Decision Problems
• Casting optimization problems as decision problems
• Ex.
• Problem: shortest path problem in unweighted graphs
• Optimization problem: Find a path between u and v that uses the fewest edges
• Decision problem: Does a path exist from u to v consisting of at most k edges?

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Minimum / least / shortest /… à at most k
Maximum/ greatest / longest / …à at least k

Class “P”
• Class P consists of [decision] problems that are solvable in polynomial

time
• Recall from the first lecture:
• [slide #36] Polynomial time à Running time is Ο "! for some constant # > 0.
• Examples

• Linear search O(n)
• Dynamic programming solutions (O(n), O(n2) , O(n3), …)
• Sorting (O(n2), O(nlogn))
• Divide-and-conquer solutions
• Graph algorithms O(n+m), O(mlogn), …

• Non-polynomial time à Ο 2" , Ο (" , Ο "! , Ο "" , …
CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Class “P”
• Class P consists of [decision] problems that are solvable in polynomial

time
• Recall from the first lecture:
• [slide #36] Polynomial time à Running time is Ο "! for some constant # > 0.
• Examples

• Linear search O(n)
• Dynamic programming solutions (O(n), O(n2) , O(n3), …)
• Sorting (O(n2), O(nlogn))
• Divide-and-conquer solutions
• Graph algorithms O(n+m), O(mlogn), …

• Non-polynomial time à Ο 2" , Ο (" , Ο "! , Ο "" , …
CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Problems in P are
Considered/called tractable

Problem not in P are
intractable

Class “P”
• Class P consists of [decision] problems that are solvable in polynomial

time
• Problems in P are Considered/called tractable
• Problem not in P are intractable

• Note this does not mean that non-polynomial algorithms are always worst
than polynomial algorithms!
• Ο "#$$…$$$$ technically tractable (polynomial time), but practically impossible.
• Ο "&'(&'(&'(" technically intractable, but practiclly easy to solve.

• Recall the “asymptotic” meaning of running time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Class “NP”
• First of all: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

•NP is the class of problems for which a candidate solution

can be verified in polynomial time.

• P is a subset of NP (P ⊆ NP)

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Class “NP”
• First of all: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

•NP is the class of problems for which a candidate solution

can be verified in polynomial time.

• P is a subset of NP (P ⊆ NP)

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Class “NP”
•Nondeterministic algorithms entail a two-stage
procedure:

1. Nondeterministic “guessing” stage

• Generate randomly an arbitrary candidate solution (≡ “certificate”)

2. Deterministic “verifying” stage

• Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Class “NP”
•Nondeterministic algorithms entail a two-stage
procedure:

1. Nondeterministic “guessing” stage

• Generate randomly an arbitrary candidate solution (≡ “certificate”)

2. Deterministic “verifying” stage

• Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Note in NP algorithms the verification step is polynomial

Class “NP”
•Nondeterministic algorithms entail a two-stage
procedure:

1. Nondeterministic “guessing” stage

• Generate randomly an arbitrary candidate solution (≡ “certificate”)

2. Deterministic “verifying” stage

• Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

But what does it mean “verifying” a candidate solution?

Class “NP”
•Difference between solving a problem and verifying a

candidate solution:

• Solving a problem: is there a path in graph G from vertex u to
vertex v with at most k edges?

• Verifying a candidate solution: is v0, v1, ..., vm a path in graph G
from vertex u to vertex v with at most k edges?

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Class “NP” solving vs verifying
•Difference between solving a problem and verifying a

candidate solution:

• Example:

• A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex
exactly once.

• Solving a problem: is there a Hamiltonian cycle in graph G?
• Verifying a candidate solution: is v0,..., vm a Hamiltonian cycle on graph G?

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Class “NP” solving vs verifying
• Example:

• A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex
exactly once.
• Solving a problem: is there a Hamiltonian cycle in graph G?
• Verifying a candidate solution: is v0,..., vm a Hamiltonian cycle on graph G?

• Certificate: A list of n nodes.
• Certifier: Check that the list contains each

node in V exactly once, and that there is
an edge between each pair of adjacent
nodes in the permutation.
• Conclusion: HAM-CYCLE is in NP.

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Class “NP” solving vs verifying
• Intuitively, solving a problem from scratch seems much harder (and

more time consuming) in comparison to just verifying whether a
candidate solution can solve the problem or not.

• Note if there are many candidate solutions to check, then even if each
individual one is quick to check, overall, it can take a long time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

P vs. NP
• Is P = NP?
• Mentioned earlier that any problem in P is also in NP. So, P is a subset

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

P vs. NP
• Is P = NP?
• Mentioned earlier that any problem in P is also in NP. So, P is a subset

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

What does it mean?

P vs. NP
• Is P = NP?
• Mentioned earlier that any problem in P is also in NP. So, P is a subset

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

• It means if it is always easy to check a candidate solution, should it also be
easy to find a solution?

• Answer? Most computer scientists believe that this is false, but we do not have
a proof

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

P vs. NP
• Is P = NP?
• Answer? Most computer scientists believe that this is false, but we do

not have a proof
• Therefore, there are two possibilities/beliefs:

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

All Problems

NP

P

P≠NP

All Problems

P = NP

P=NP

NP-Complete (NPC)
• NP-complete problems are a class of "hardest" problems in NP.
• If you can solve an NP-complete problem, then you can solve all NP

problems (show later).
• Hence, if any NP-complete problem can be solved in polynomial time,

then all problems in NP can be, and thus P = NP.
• Precise/formal definition coming later...

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Possible Worlds
• Therefore, there are two possibilities:

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC

Reductions
• Reduction from A to B is showing that we can solve A using the

algorithm that solves B

• We say that problem A is easier than problem B, and
• We write " ≤ $

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Reductions
• Reduction from A to B is showing that we can solve A using the

algorithm that solves B

• We say that problem A is easier than problem B, and
• We write " ≤ $

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

! Problem B

Problem A

! " YesYes

No No

Reductions
• " ≤ $: Reduction from A to B is showing that we can solve A using

the algorithm that solves B
• If we have an oracle for solving B, then we can solve A by making

polynomial number of computations and polynomial number of calls
to the oracle for B
• We can transform the inputs of A to inputs of B

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

! Problem B

Problem A

! " YesYes

No No

Reductions
• Before discussing further regarding reduction in NPC, note that we

can also do reductions on polynomial time (poly-time) algorithms.

• Examples:
• Transforming a given problem to a graph, and solving the problem using graph

algorithms (for example, SCC)

• Solving all-pairs shortest path problem using multiple (polynomial number of)
calls to Dijkstra’s algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as " ≤! $ if:

1. There exists a function + that converts the input of A to inputs of B in
polynomial time

2. , - = YES ⟺ 3 + - = YES

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

Proving Polynomial Time
1. Use a polynomial time reduction algorithm to transform A into B.
2. Run a known polynomial time algorithm for B.
3. Use the answer for B as the answer for A.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

! Poly-time algorithm to
decide B

Poly-time algorithm to decide A

! " YesYes

No No

Implications of Polynomial-Time Reductions
• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If ! ≤! # and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

• Establish intractability. If ! ≤! # and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

• Establish equivalence. If ! ≤! # and # ≤! ! , we use notation ! ≡! #.

• Transitivity. If ! ≤! # and # ≤! % ,then ! ≤! %.

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

Reductions Strategies
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as " ≤! $ if:
1. There exists a function + that converts the input of A to inputs of B in

polynomial time
2. , - = YES ⟺ 3 + - = YES

• Reductions Strategies
• Reduction by simple equivalence.
• Reduction from a special case to a general case.
• Reduction by encoding with gadgets.

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Example
• We want to show the problem VERTEX-COVER is polynomially

reducible to the SET-COVER problem, i.e.,

VERTEX-COVER ≤P SET-COVER

• VERTEX-COVER problem?
• SET-COVER problem?
• Reduction process?

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Example
• Vertex Cover
• MINIMUM VERTEX COVER: Given a graph G = (V, E), find the smallest

subset of vertices S ⊆ V, such that for each edge at least one of its endpoints is
in S?
• VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least one of its
endpoints is in S?

• Ex. Is there a vertex cover of size ≤ 4? Yes.
• Ex. Is there a vertex cover of size ≤ 3? No.

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

Example
• Vertex Cover
• SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of

subsets of U, and an integer k, does there exist a collection of k of these sets
whose union is equal to U?

• Ex. U = { 1, 2, 3, 4, 5, 6, 7 } k=2
• S1 ={3,7}
• S2 ={3,4,5,6}
• S3 ={1}
• S4 ={2,4}
• S5 ={5}
• S6 = {1,2,6,7}

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

Example
• We want to show the problem VERTEX-COVER is polynomially

reducible to the SET-COVER problem.
• Theorem. VERTEX-COVER ≤P SET-COVER
• Proof. Given a VERTEX-COVER instance G = (V, E) and k, we

construct a SET-COVER instance (U, S, k) that has a set cover of size k
iff G has a vertex cover of size k.
• Construction.
• Universe U = E.
• Include one subset for each node v ∈ V: Sv ={e ∈ E: e incident to v}.
• The transformation takes linear time on the size of the VC instance.

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

Example
• Construction.
• Universe U = E.
• Include one subset for each node v ∈ V: Sv ={e ∈ E: e incident to v}.
• The transformation takes linear time on the size of the VC instance.

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

Example
• Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k)

contains a set cover of size k.
That is, VC(i) = yes ⟺ SC(f(i)) = yes

• Proof. (⇒)
• Let X ⊆ V be a vertex cover of size k in G.
• Then, Y = {Sv: v ∈ X} is a set cover of size k.

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇒) VC(i) = yes ⇒ SC(f(i)) = yes
• VC(i) is a yes instance ⟹ it has a solution; let V’ ⊆ V be such a solution

|V’| ≤ k, every edge has at least one end point in V’
• Consider V’ = {i1, i2, i3, …, il}, l ≤ k, and therefore, A = {7)! , 7)" , …, 7)#}.
• For the sake of contradiction assume A is not a solution to SC(f(i)):

• The number of sets in A is l ≤ k. Thus, it must be the case that "!! ∪ "!" ∪ … ∪ "!# ≠ %
• This means there is at least an edge & ∈ % that is not in "!! ∪ "!" ∪ … ∪ "!#.
• This & is also corresponds to an edge in VC(i), & =), + , so "" and "# are not in A, i.e.,
"", "# ∉ - ⇒ u, v ∉ 1′ (by construction of A)

• This means & =), + would not have been covered by V’
• So, V’ is not solution to VC, which is a contradiction.

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇐) (VC(i) = yes ⇐ SC(f(i)) = yes) Or (SC(f(i)) = yes ⇒ VC(i) = yes)
• Let Y ⊆ S be a set cover of size k in (U, S, k)
• Then, X = {v: Sv∈ Y} is a vertex cover of size k in G.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇐) (VC(i) = yes ⇐ SC(f(i)) = yes) Or (SC(f(i)) = yes ⇒ VC(i) = yes)

• SC(f(i)) is a yes instance ⟹ it has a solution; let A = {$!! , $!" , …, $!#} be such a
solution.

• ⟹ l ≤ k and $!! ∪ $!" ∪ … ∪ $!# = ((by definition of SC)
• Consider the vertex set V’ = {i1, i2, i3, …, il}
• For the sake of contradiction assume V’ is not a solution to VC(i):

• The number of vertices in V’ is l ≤ k. Thus, it must be breaking the edge covering requirement
of VC.

• Therefore, there must be at least an edge " ∈ $such that u ∉ '′, v ∉ '′
• This implies *$ and *% were not included in solution A.
• By construction of f(i), " = ,, . ∈/, and *$, *% were the only sets containing ".
• Thus, " ∉ *&! ∪ *&" ∪ … ∪ *&# , i.e., " is not covered by the solution set A. So, A is not a

solution (Contradiction)
• ⟹ V’ is a solution to VC(i)

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

NP-Completeness (Formal Definition)
• A problem) is NP-hard if * ≤!) for all * ∈ ,-
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem

• A problem Y is NP-complete if:
1. < ∈ NP
2. < is NP-hard

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

https://en.wikipedia.org/wiki/P_versus_NP_problem

Establishing NP-Completeness
• Establishing NP-completeness à using “reduction”
• Once we establish the first "natural" NP-complete problem, others fall

like dominoes!

• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (< ∈ NP)
• Step 2. Choose an NP-complete problem =.
• Step 3. Prove that = ≤* < (poly-time reduction).

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Establishing NP-Completeness
• Establishing NP-completeness à using “reduction”
• Once we establish the first "natural" NP-complete problem, others fall

like dominoes!

• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (< ∈ NP)
• Step 2. Choose an NP-complete problem =.
• Step 3. Prove that = ≤* < (poly-time reduction).

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Why does it work?

Establishing NP-Completeness
• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (< ∈ NP)
• Step 2. Choose an NP-complete problem =.
• Step 3. Prove that = ≤* < (poly-time reduction).

• Justification: If X is an NP-complete problem, and Y is a problem in
NP with the property that X ≤P Y then Y is NP-complete.
• Proof.
• Let W be any problem in NP. Then, W ≤P X ≤P Y
• By transitivity, W ≤P Y.
• Hence, Y is NP-complete.

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

by definition of NPC

Establishing NP-Completeness
• Recipe to establish NP-completeness of problem Y.
• Step1. Show that Y is in NP. (< ∈ NP)

• Describe how a potential solution will be represented
• Describe a procedure to check whether the potential solution is a correct solution to the

problem instance, and argue that this procedure takes polynomial time

• Step 2. Choose an NP-complete problem =.

• Step 3. Prove that = ≤* < (X is poly-time reducible to Y).
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
• Show that the reduction is correct by showing that 3 4 = YES ⟺ 9 : 4 = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Establishing NP-Completeness
• Important note about step 2 and 3:

• To establish NP-completeness of problem Y, we show that

some other NP-complete problem X is polynomially

reducable to this algorithm.

•Note the reduction is from algorithm X to Y (X ≤P Y), not

the reverse direction!

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Revisit “Is P = NP?”
• Theorem. Suppose Y is an NP-complete problem. Y is solvable in

poly-time if and only if P = NP.
• Proof (⇐) If P=NP then Y is in P. Hence, Y can be solved in poly-time.
• Proof (⇒) Suppose Y can be solved in poly-time.
• Let X be any problem in NP.

Then, we know that X ≤P Y by definition
of NP-complete and Y being NP-complete
problem. Then we can solve X in poly-time
by solving Y in poly-time. This implies any
problem X in NP is also in P, i.e., NP ⊆ P.
• We already know P ⊆ NP. Thus, P=NP.

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

https://en.wikipedia.org/wiki/P_versus_NP_problem

Examples of NPC problems
• Shortest simple path
• Given a graph G = (V, E) find a shortest path from a source to all other

vertices
• Polynomial solution: Bellman-Ford O(VE) (complexity class P)

• Longest simple path
• Given a graph G = (V, E) find a longest path from a source to all other vertices
• NP-complete

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Examples of NPC problems
• Euler tour
• G = (V, E) a connected, directed graph find a cycle that traverses each edge of

G exactly once (may visit a vertex multiple times)
• Polynomial solution O(E)

• Hamiltonian cycle
• G = (V, E) a connected, directed graph find a cycle that visits each vertex of G

exactly once
• NP-complete

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

The First NPC Problem
• The satisfiability (SAT) problem was the first problem shown to be

NP-complete (Cook–Levin theorem)

• Satisfiability problem: given a logical expression Φ, find an
assignment of True/False values to binary variables /; that causes Φ to
evaluate to T.
• Ex. Φ = /< ⋁ ¬/= ⋀ /> ⋁ ¬/?

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Quick Review
• Boolean variables: take on values T (or 1) or F (or 0)
• Literal: variable or negation of a variable, e.g., /=, ¬/=

• Notation: ¬/= = /= = not /=

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

+$ +% +$⋀ +%
(AND)

+$⋁ +%
(OR)

T T T T
T F F T
0 T F T
0 F F F

The First NPC Problem
• Satisfiability problem: given a logical expression Φ, find an

assignment of True/False values to binary variables /; that causes Φ to
evaluate to T.

• SAT is in NP: given a value assignment, check the Boolean logic of Φ
evaluates to True (linear time)

• The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook–Levin theorem)

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NP-complete

NP-hard
A problem " is NP-hard if # ≤$ " for all # ∈ &'
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NP-complete

NP-hard
A problem " is NP-hard if # ≤$ " for all # ∈ &'
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

PSolvable in poly-time

Candidate can be evaluated
in poly-time

NP

NPC

NP-hard
A problem " is NP-hard if # ≤$ " for all # ∈ &'
NP-hard problems are at least as hard as any NP problem

A problem Y is NP-complete if:
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can
polynomially be reduced
to SAT

SAT is at least as hard as
all problems in NP

Once we establish the
first "natural" NPC
problem, others fall like
dominoes! 3SAT

Vertex
Cover

Graph
ColoringMax-Cut

≤P

≤P≤P≤P ≤P

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• Slides by Umit Catalyurek, Georgia Institute of Technology.
(Based on slides by Bistra Dilkina, Anne Benoit, Jennifer Welch, George Bebis, and Kevin Wayne)

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

117CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

