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We are here!



NP-Completeness 
• So far, we have seen a lot of good news! 
• Problems can be solved quickly/efficiently (i.e., linear time, or at least a time 

that is some small polynomial function of the input size) 

• NP-completeness is a form of bad news!
• There exist many important problems that cannot be solved quickly. 

• NP-complete problems really come up all the time! 
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NP-Completeness
• Why should we care? 
• Knowing that they are hard lets you stop beating your head against a wall 

trying to solve them!

• Restrict the problem: find special restrictions/variants to the problem for 
which there is a polynomial time algorithm.
• Use a heuristic: come up with a method for solving a reasonable fraction of 

the common cases. 
• Solve approximately: come up with a method that finds solutions provably 

close to the optimal. 
• Use an exponential time solution: if you really have to solve the problem 

exactly and stop worrying about finding a better solution. 
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Optimization vs. Decision Problems 
• Decision problems
• Given an input and a question regarding a problem, determine if the answer is 

yes or no

• Optimization problems
• Find a solution with the “best” value 

• Optimization problems can be cast as decision problems that are easier 
to study
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Optimization vs. Decision Problems 
• Casting optimization problems as decision problems
• Ex.
• Problem: shortest path problem in unweighted graphs
• Optimization problem: Find a path between u and v that uses the fewest edges 
• Decision problem: Does a path exist from u to v consisting of at most k edges? 
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Minimum / least / shortest /…     à at most k
Maximum/ greatest / longest / …à at least k



Class “P”
• Class P consists of [decision] problems that are solvable in polynomial 

time 
• Recall from the first lecture:
• [slide #36] Polynomial time à Running time is Ο "! for some constant # > 0.
• Examples

• Linear search O(n)
• Dynamic programming solutions (O(n), O(n2) , O(n3), …)
• Sorting (O(n2), O(nlogn))
• Divide-and-conquer solutions
• Graph algorithms O(n+m), O(mlogn), …

• Non-polynomial time à Ο 2" , Ο (" , Ο "! , Ο "" , …
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Class “P”
• Class P consists of [decision] problems that are solvable in polynomial 

time 
• Problems in P are Considered/called tractable
• Problem not in P are intractable

• Note this does not mean that non-polynomial algorithms are always worst 
than polynomial algorithms!
• Ο "#$$…$$$$ technically tractable (polynomial time), but practically impossible.
• Ο "&'( &'( &'( " technically intractable, but practiclly easy to solve.

• Recall the “asymptotic” meaning of running time.
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Class “NP”
• First of all: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

•NP is the class of problems for which a candidate solution 

can be verified in polynomial time. 

• P is a subset of NP (P ⊆ NP)
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Class “NP”
•Nondeterministic algorithms entail a two-stage 
procedure:

1. Nondeterministic “guessing” stage

• Generate randomly an arbitrary candidate solution (≡ “certificate”) 

2. Deterministic “verifying” stage

• Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)
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Class “NP”
•Nondeterministic algorithms entail a two-stage 
procedure:

1. Nondeterministic “guessing” stage

• Generate randomly an arbitrary candidate solution (≡ “certificate”) 

2. Deterministic “verifying” stage

• Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)
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Class “NP”
•Difference between solving a problem and verifying a 

candidate solution: 

• Solving a problem: is there a path in graph G from vertex u to 
vertex v with at most k edges?

• Verifying a candidate solution: is v0, v1, ..., vm a path in graph G 
from vertex u to vertex v with at most k edges? 
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Class “NP” solving vs verifying 
•Difference between solving a problem and verifying a 

candidate solution: 

• Example: 

• A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex 
exactly once. 

• Solving a problem: is there a Hamiltonian cycle in graph G? 
• Verifying a candidate solution: is v0,..., vm a Hamiltonian cycle on graph G?
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Class “NP” solving vs verifying 
• Example: 

• A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex 
exactly once. 
• Solving a problem: is there a Hamiltonian cycle in graph G? 
• Verifying a candidate solution: is v0,..., vm a Hamiltonian cycle on graph G?

• Certificate: A list of n nodes. 
• Certifier: Check that the list contains each 

node in V exactly once, and that there is 
an edge between each pair of adjacent 
nodes in the permutation.
• Conclusion: HAM-CYCLE is in NP. 
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Class “NP” solving vs verifying 
• Intuitively, solving a problem from scratch seems much harder (and 

more time consuming) in comparison to just verifying whether a 
candidate solution can solve the problem or not.

• Note if there are many candidate solutions to check, then even if each 
individual one is quick to check, overall, it can take a long time. 
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P vs. NP
• Is P = NP? 
• Mentioned earlier that any problem in P is also in NP. So, P is a subset 

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.
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P vs. NP
• Is P = NP? 
• Mentioned earlier that any problem in P is also in NP. So, P is a subset 

of NP (P ⊆ NP)
• But the big (and open) question is whether NP ⊆ P, and so P=NP.

• It means if it is always easy to check a candidate solution, should it also be 
easy to find a solution?

• Answer? Most computer scientists believe that this is false, but we do not have 
a proof 
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P vs. NP
• Is P = NP? 
• Answer? Most computer scientists believe that this is false, but we do 

not have a proof 
• Therefore, there are two possibilities/beliefs:
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All Problems

NP

P

P≠NP

All Problems

P = NP

P=NP



NP-Complete (NPC)
• NP-complete problems are a class of "hardest" problems in NP. 
• If you can solve an NP-complete problem, then you can solve all NP 

problems (show later). 
• Hence, if any NP-complete problem can be solved in polynomial time, 

then all problems in NP can be, and thus P = NP.
• Precise/formal definition coming later... 
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Possible Worlds 
• Therefore, there are two possibilities:
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All Problems

NP

P

P≠NP

All Problems

P=NP

NPC P = NP=NPC



Reductions 
• Reduction from A to B is showing that we can solve A using the 

algorithm that solves B 

• We say that problem A is easier than problem B, and
• We write " ≤ $
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Reductions 
• " ≤ $: Reduction from A to B is showing that we can solve A using 

the algorithm that solves B 
• If we have an oracle for solving B, then we can solve A by making 

polynomial number of computations and polynomial number of calls 
to the oracle for B 
• We can transform the inputs of A to inputs of B  
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Reductions
• Before discussing further regarding reduction in NPC, note that we 

can also do reductions on polynomial time (poly-time) algorithms.

• Examples:
• Transforming a given problem to a graph, and solving the problem using graph 

algorithms (for example, SCC)

• Solving all-pairs shortest path problem using multiple (polynomial number of) 
calls to Dijkstra’s algorithm
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Polynomial Reductions
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as " ≤! $ if:

1. There exists a function + that converts the input of A to inputs of B in 
polynomial time 

2. , - = YES ⟺ 3 + - = YES
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Proving Polynomial Time 
1. Use a polynomial time reduction algorithm to transform A into B. 
2. Run a known polynomial time algorithm for B. 
3. Use the answer for B as the answer for A. 
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! Poly-time algorithm to 
decide B

Poly-time algorithm to decide A

! " YesYes

No No



Implications of Polynomial-Time Reductions 
• Purpose. Classify problems according to relative difficulty. 

• Design algorithms. If ! ≤! # and Y can be solved in polynomial-time, 
then X can also be solved in polynomial time. 

• Establish intractability. If ! ≤! # and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time. 

• Establish equivalence. If ! ≤! # and # ≤! ! , we use notation ! ≡! #. 

• Transitivity. If ! ≤! # and # ≤! % ,then ! ≤! %. 
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Reductions Strategies
• Given two problems, A and B, we say that A is polynomially reducible

to B, and write it as " ≤! $ if:
1. There exists a function + that converts the input of A to inputs of B in 

polynomial time 
2. , - = YES ⟺ 3 + - = YES

• Reductions Strategies
• Reduction by simple equivalence.
• Reduction from a special case to a general case. 
• Reduction by encoding with gadgets. 
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Example
• We want to show the problem VERTEX-COVER is polynomially

reducible to the SET-COVER problem, i.e., 

VERTEX-COVER ≤P SET-COVER

• VERTEX-COVER problem?
• SET-COVER problem?
• Reduction process?
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Example
• Vertex Cover 
• MINIMUM VERTEX COVER: Given a graph G = (V, E), find the smallest 

subset of vertices S ⊆ V, such that for each edge at least one of its endpoints is 
in S? 
• VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least one of its 
endpoints is in S? 

• Ex. Is there a vertex cover of size ≤ 4? Yes. 
• Ex. Is there a vertex cover of size ≤ 3? No. 
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Example
• Vertex Cover 
• SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of 

subsets of U, and an integer k, does there exist a collection of k of these sets 
whose union is equal to U?

• Ex. U = { 1, 2, 3, 4, 5, 6, 7 } k=2 
• S1 ={3,7} 
• S2 ={3,4,5,6}
• S3 ={1} 
• S4 ={2,4}
• S5 ={5}
• S6 = {1,2,6,7}
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Example
• We want to show the problem VERTEX-COVER is polynomially

reducible to the SET-COVER problem.
• Theorem. VERTEX-COVER ≤P SET-COVER
• Proof. Given a VERTEX-COVER instance G = (V, E) and k, we 

construct a SET-COVER instance (U, S, k) that has a set cover of size k 
iff G has a vertex cover of size k.
• Construction. 
• Universe U = E.
• Include one subset for each node v ∈ V:  Sv ={e ∈ E: e incident to v}. 
• The transformation takes linear time on the size of the VC instance. 
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Example
• Construction. 
• Universe U = E.
• Include one subset for each node v ∈ V:  Sv ={e ∈ E: e incident to v}. 
• The transformation takes linear time on the size of the VC instance. 
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Example
• Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) 

contains a set cover of size k. 
That is, VC(i) = yes ⟺ SC(f(i)) = yes

• Proof. (⇒) 
• Let X ⊆ V be a vertex cover of size k in G. 
• Then, Y = {Sv: v ∈ X} is a set cover of size k. 
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Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇒)  VC(i) = yes ⇒ SC(f(i)) = yes
• VC(i) is a yes instance ⟹ it has a solution; let V’ ⊆ V be such a solution 

|V’| ≤ k, every edge has at least one end point in V’
• Consider V’ = {i1, i2, i3, …, il}, l ≤ k, and therefore, A = {7)! , 7)" , …, 7)#}.
• For the sake of contradiction assume A is not a solution to SC(f(i)):

• The number of sets in A is l ≤ k. Thus, it must be the case that "!! ∪ "!" ∪ … ∪ "!# ≠ %
• This means there is at least an edge & ∈ % that is not in "!! ∪ "!" ∪ … ∪ "!#.
• This & is also corresponds to an edge in VC(i), & = ), + , so "" and "# are not in A, i.e., 
"", "# ∉ - ⇒ u, v ∉ 1′ (by construction of A)

• This means & = ), + would not have been covered by V’  
• So, V’ is not solution to VC, which is a contradiction.
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Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇐)   (VC(i) = yes ⇐ SC(f(i)) = yes)  Or (SC(f(i)) = yes ⇒ VC(i) = yes)
• Let Y ⊆ S be a set cover of size k in (U, S, k)
• Then, X = {v: Sv∈ Y} is a vertex cover of size k in G. 
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Example
• Lemma. VC(i) = yes ⟺ SC(f(i)) = yes
• Proof. (⇐)   (VC(i) = yes ⇐ SC(f(i)) = yes)  Or (SC(f(i)) = yes ⇒ VC(i) = yes)

• SC(f(i)) is a yes instance ⟹ it has a solution; let A = {$!! , $!" , …, $!#} be such a 
solution. 

• ⟹ l ≤ k and $!! ∪ $!" ∪ … ∪ $!# = ( (by definition of SC)
• Consider the vertex set V’ = {i1, i2, i3, …, il}
• For the sake of contradiction assume V’ is not a solution to VC(i):

• The number of vertices in V’ is l ≤ k. Thus, it must be breaking the edge covering requirement 
of VC.

• Therefore, there must be at least an edge " ∈ $such that u ∉ '′, v ∉ '′
• This implies *$ and *% were not included in solution A.
• By construction of f(i), " = ,, . ∈/, and *$, *% were the only sets containing ".
• Thus, " ∉ *&! ∪ *&" ∪ … ∪ *&# , i.e., " is not covered by the solution set A. So, A is not a 

solution (Contradiction)
• ⟹ V’ is a solution to VC(i)
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NP-Completeness (Formal Definition)
• A problem ) is NP-hard if * ≤! ) for all * ∈ ,-
• A problem is NP-hard if and only if a polynomial-time algorithm for it implies 

a polynomial-time algorithm for every problem in NP
• NP-hard problems are at least as hard as any NP problem 

• A problem Y is NP-complete if: 
1. < ∈ NP
2. < is NP-hard
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Establishing NP-Completeness 
• Establishing NP-completeness à using “reduction”
• Once we establish the first "natural" NP-complete problem, others fall 

like dominoes! 

• Recipe to establish NP-completeness of problem Y. 
• Step1. Show that Y is in NP.  (< ∈ NP)
• Step 2. Choose an NP-complete problem =.  
• Step 3. Prove that = ≤* < (poly-time reduction). 
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Establishing NP-Completeness 
• Recipe to establish NP-completeness of problem Y. 
• Step1. Show that Y is in NP.  (< ∈ NP)
• Step 2. Choose an NP-complete problem =.  
• Step 3. Prove that = ≤* < (poly-time reduction). 

• Justification: If X is an NP-complete problem, and Y is a problem in 
NP with the property that X ≤P Y then Y is NP-complete. 
• Proof.
• Let W be any problem in NP. Then, W  ≤P  X  ≤P Y 
• By transitivity, W  ≤P Y.
• Hence, Y is NP-complete. 
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Establishing NP-Completeness 
• Recipe to establish NP-completeness of problem Y. 
• Step1. Show that Y is in NP.  (< ∈ NP)

• Describe how a potential solution will be represented 
• Describe a procedure to check whether the potential solution is a correct solution to the 

problem instance, and argue that this procedure takes polynomial time 

• Step 2. Choose an NP-complete problem =.  

• Step 3. Prove that = ≤* < (X is poly-time reducible to Y). 
• Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time 
• Show that the reduction is correct by showing that 3 4 = YES ⟺ 9 : 4 = YES

Note this is an “if and only if” condition, so proofs are needed for both directions.
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Establishing NP-Completeness 
• Important note about step 2 and 3:

• To establish NP-completeness of problem Y, we show that 

some other NP-complete problem X is polynomially

reducable to this algorithm.

•Note the reduction is from algorithm X to Y (X  ≤P Y), not 

the reverse direction!
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Revisit “Is P = NP?”
• Theorem. Suppose Y is an NP-complete problem. Y is solvable in 

poly-time if and only if P = NP. 
• Proof (⇐) If P=NP then Y is in P. Hence, Y can be solved in poly-time.
• Proof (⇒) Suppose Y can be solved in poly-time. 
• Let X be any problem in NP. 

Then, we know that X  ≤P Y by definition 
of NP-complete and Y being NP-complete
problem. Then we can solve X in poly-time
by solving Y in poly-time. This implies any
problem X in NP is also in P, i.e., NP ⊆ P. 
• We already know P ⊆ NP. Thus, P=NP. 
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Examples of NPC problems
• Shortest simple path 
• Given a graph G = (V, E) find a shortest path from a source to all other 

vertices 
• Polynomial solution: Bellman-Ford O(VE)   (complexity class P)

• Longest simple path 
• Given a graph G = (V, E) find a longest path from a source to all other vertices 
• NP-complete
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Examples of NPC problems
• Euler tour 
• G = (V, E) a connected, directed graph find a cycle that traverses each edge of 

G exactly once (may visit a vertex multiple times) 
• Polynomial solution O(E) 

• Hamiltonian cycle 
• G = (V, E) a connected, directed graph find a cycle that visits each vertex of G 

exactly once 
• NP-complete 
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The First NPC Problem
• The satisfiability (SAT) problem was the first problem shown to be 

NP-complete (Cook–Levin theorem)

• Satisfiability problem: given a logical expression Φ, find an 
assignment of True/False values to binary variables /; that causes Φ to 
evaluate to T.
• Ex.                        Φ = /< ⋁ ¬/= ⋀ /> ⋁ ¬/?
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Quick Review
• Boolean variables: take on values T (or 1)  or F (or 0)
• Literal: variable or negation of a variable, e.g., /=, ¬/=

• Notation:    ¬/= =   /= = not /=
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The First NPC Problem
• Satisfiability problem: given a logical expression Φ, find an 

assignment of True/False values to binary variables /; that causes Φ to 
evaluate to T.

• SAT is in NP: given a value assignment, check the Boolean logic of Φ
evaluates to True (linear time) 

• The satisfiability (SAT) problem was the first problem shown to be 
NP-complete (Cook–Levin theorem)
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PSolvable in poly-time

Candidate can be evaluated 
in poly-time
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NP-complete

NP-hard
A problem " is NP-hard if # ≤$ " for all # ∈ &'
NP-hard problems are at least as hard as any NP problem 

A problem Y is NP-complete if: 
1. Y ∈ NP
2. Y is NP-hard
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PSolvable in poly-time

Candidate can be evaluated 
in poly-time

NP

NPC

NP-hard
A problem " is NP-hard if # ≤$ " for all # ∈ &'
NP-hard problems are at least as hard as any NP problem 

A problem Y is NP-complete if: 
1. Y ∈ NP
2. Y is NP-hard

SAT
≤P

All problems in NP

All problems in NP can 
polynomially be reduced 
to SAT

SAT is at least as hard as 
all problems in NP

Once we establish the 
first "natural" NPC 
problem, others fall like 
dominoes! 3SAT

Vertex 
Cover

Graph 
ColoringMax-Cut

≤P

≤P≤P≤P ≤P
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