CS-3510:
Design and Analysis of Algorithms

NP Completeness I

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

" QPart 2:
.~ -Recursion
" -Divide-and-Conquer

=

-Introduction, ,~ dPart 3 By
-Analysis of Algorithms . ~Dynamic Progr ammmg/)
-Asymptotic Order of Growth [

-Big-O Notation

We are here! .
OPart 7:

-NP-Completeness -

OPart 6:
-Network Flow

QPart 4:
-Greedy Algorithm

QPart 5: Graph Algorithm
- Definition, Traversal

- Grid Problems

- Minimum Spanning Tree
- Shortest Path Problem
- Topological Sorting

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

NP-Completeness

* So far, we have seen a lot of good news!

* Problems can be solved quickly/efficiently (i.e., linear time, or at least a time
that 1s some small polynomial function of the input size)

* NP-completeness 1s a form of bad news!
* There exist many important problems that cannot be solved quickly.

* NP-complete problems really come up all the time!

e
v

NP-Completeness

* Why should we care?

* Knowing that they are hard lets you stop beating your head against a wall
trying to solve them!

* Restrict the problem: find special restrictions/variants to the problem for
which there 1s a polynomial time algorithm.

* Use a heuristic: come up with a method for solving a reasonable fraction of
the common cases.

* Solve approximately: come up with a method that finds solutions provably
close to the optimal.

* Use an exponential time solution: if you really have to solve the problem
exactly and stop worrying about finding a better solution.

Y

Optimization vs. Decision Problems

* Decision problems

e (Given an input and a question regarding a problem, determine if the answer 1s
yes or no

* Optimization problems
* Find a solution with the “best” value

* Optimization problems can be cast as decision problems that are easier
to study

e
v

Optimization vs. Decision Problems

* Casting optimization problems as decision problems

e EX.

* Problem: shortest path problem 1n unweighted graphs
* Optimization problem: Find a path between u and v that uses the fewest edges
* Decision problem: Does a path exist from u to v consisting of at most k edges?

Minimum / least / shortest /... => at most k
Maximum/ greatest / longest/ ...=> atleastk

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Class “P”

* Class P consists of [decision] problems that are solvable in polynomial
time

e Recall from the first lecture:

* [slide #36] Polynomial time => Running time is O(nk) for some constant k > 0.

* Examples
e Linear search O(n)

* Dynamic programming solutions (O(n), O(n?) , O(n?), ...)
* Sorting (O(n?), O(nlogn))

* Divide-and-conquer solutions

* Graph algorithms O(n+m), O(mlogn), ...

* Non-polynomial time = 0(2™), 0(a™), 0(n!), 0(n™), ...

e
v

Class “P”

* Class P consists of [decision] problems that are solvable in polynomial

time

e Recall from the first lecture:

* [slide #36] Polynomial time => Running time is O(nk) for some constant k > 0.
* Examples

Linear search O(n)

Dynamic programming solutions (O(n), O(n?) , O(n?), ...)
Sorting (O(n?), O(nlogn))

Divide-and-conquer solutions

Graph algorithms O(n+m), O(mlogn), ...

Problems in P are
Considered/called tractable

Problem not in P are
intractable

* Non-polynomial time = 0(2™), 0(a™), 0(n!), 0(n™), ...

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Class “P”

* Class P consists of [decision] problems that are solvable in polynomial
time
e Problems in P are Considered/called tractable
e Problem not in P are intractable

* Note this does not mean that non-polynomial algorithms are always worst
than polynomial algorithms!

e 0(n109-0000) technically tractable (polynomial time), but practically impossible.
. O(nlog log log ™) technically intractable, but practiclly easy to solve.

* Recall the “asymptotic” meaning of running time.

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Class “NP”

e First of all;: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

* NP is the class of problems for which a candidate solution
can be verified in polynomial time.

* P is a subset of NP (P € NP)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

10

Class “NP”

e First of all;: NP does NOT stand for not-P!

NP = Nondeterministic Polynomial

* NP is the class of problems for which a candidate solution
can be verified in polynomial time.

* P is a subset of NP (P € NP)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

11

Class “NP”

* Nondeterministic algorithms entail a two-stage
procedure:

1. Nondeterministic “guessing” stage
* Generate randomly an arbitrary candidate solution (= “certificate™)

2. Deterministic “verifying” stage

* Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Class “NP”

* Nondeterministic algorithms entail a two-stage
procedure:

Note in NP algorithms the verification step i1s polynomial

1. Nondeterministic “guessing” stage
* Generate randomly an arbitrary candidate solution (= “certificate™)

2. Deterministic “verifying” stage

* Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Class “NP”

* Nondeterministic algorithms entail a two-stage
procedure:

But what does it mean “verifying” a candidate solution?

1. Nondeterministic “guessing” stage
* Generate randomly an arbitrary candidate solution (= “certificate™)

2. Deterministic “verifying” stage

* Take the certificate and the instance to the problem and returns YES
if the certificate represents a solution (verifying in polynomial time)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Class “NP”

* Difference between solving a problem and verifying a
candidate solution:

* Solving a problem: 1s there a path in graph G from vertex u to
vertex v with at most k edges?

* Verifying a candidate solution: 1s v, vy, ..., v, a path in graph G
from vertex u to vertex v with at most k edges?

e
v

Class “NP” solving vs verifying

* Difference between solving a problem and verifying a
candidate solution:

* Example:
* A Hamiltonian cycle in an undirected graph 1s a cycle that visits every vertex
exactly once. /\
hamiltonian
hamiltonian

* Solving a problem: 1s there a Hamiltonian cycle in graph G?
* Verifying a candidate solution: 1s vy,..., v, @ Hamiltonian cycle on graph G?

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

16

Class “NP” solving vs verifying

* Example:

* A Hamiltonian cycle in an undirected graph 1s a cycle that visits every vertex

exactly once.
* Solving a problem: 1s there a Hamiltonian cycle in graph G?
 Verifying a candidate solution: 1s vy,..., v, @ Hamiltonian cycle on graph G?

» Certificate: A list of n nodes.

* Certifier: Check that the list contains each
node 1in V exactly once, and that there 1s
an edge between each pair of adjacent

instance s

certificate t

nodes in the permutation.
e Conclusion: HAM-CYCLE is in NP.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

17

Class “NP” solving vs verifying

* Intuitively, solving a problem from scratch seems much harder (and
more time consuming) 1n comparison to just verifying whether a
candidate solution can solve the problem or not.

* Note if there are many candidate solutions to check, then even if each
individual one 1s quick to check, overall, it can take a long time.

e
v

P vs. NP

*[s P=NP?

* Mentioned earlier that any problem in P 1s also in NP. So, P 1s a subset

of NP (P € NP)
* But the big (and open) question is whether NP € P, and so P=NP.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

19

P vs. NP

*[s P=NP?

* Mentioned earlier that any problem in P 1s also in NP. So, P 1s a subset

of NP (P C NP)

 But the big (and open) question is whether NP € P, and so P=NP.

What does it mean?

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

20

P vs. NP

*[s P=NP?

* Mentioned earlier that any problem in P 1s also in NP. So, P 1s a subset
of NP (P € NP)

 But the big (and open) question is whether NP € P, and so P=NP.

It means 1f 1t 1s always easy to check a candidate solution, should it also be
easy to find a solution?

* Answer? Most computer scientists believe that this 1s false, but we do not have
a proof

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 21

P vs. NP

*[s P=NP?

* Answer? Most computer scientists believe that this 1s false, but we do
not have a proof

* Therefore, there are two possibilities/beliefs:

- All Problems) 4 All Problems)
NP
_ J _)
P#NP P=NP

P
L 4

NP-Complete (NPC)

* NP-complete problems are a class of "hardest" problems in NP.

* If you can solve an NP-complete problem, then you can solve all NP
problems (show later).

* Hence, 1f any NP-complete problem can be solved in polynomial time,
then all problems in NP can be, and thus P = NP.

* Precise/formal definition coming later...

Y

Possible Worlds

* Therefore, there are two possibilities:

s

All Problems \ /

All Problems \

P#NP

P=NP

P
L 4

Reductions

* Reduction from A to B 1s showing that we can solve A using the
algorithm that solves B

* We say that problem A 1s easier than problem B, and
* Wewrite A < B

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

25

Reductions

* Reduction from A to B 1s showing that we can solve A using the
algorithm that solves B

* We say that problem A 1s easier than problem B, and
* Wewrite A < B

‘ Yes
o ﬁ Yes >
> f > Problem B
No N >
Problem A ‘ P

Reductions

* A < B: Reduction from A to B 1s showing that we can solve A using
the algorithm that solves B

* If we have an oracle for solving B, then we can solve A by making
polynomial number of computations and polynomial number of calls
to the oracle for B

* We can transform the inputs of A to inputs of B

‘ Yes
o ﬁ Yes >
> f > Problem B
No N >
Problem A ‘ P

Reductions

* Before discussing further regarding reduction in NPC, note that we
can also do reductions on polynomial time (poly-time) algorithms.

* Examples:

* Transforming a given problem to a graph, and solving the problem using graph
algorithms (for example, SCC)

* Solving all-pairs shortest path problem using multiple (polynomial number of)
calls to Dyjkstra’s algorithm

e
v

Polynomial Reductions

* Given two problems, A and B, we say that A 1s polynomially reducible

toB,and write it as A <, B if:

1. There exists a function f that converts the input of A to inputs of B in
polynomial time

2. A(i) = YES & B(f(i)) = YES

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

29

Proving Polynomial Time

1.

2. Run a known polynomial time algorithm for B.

Use a polynomial time reduction algorithm to transform A into B.

3. Use the answer for B as the answer for A.

ﬁ | | Yes ‘ Yes
a L . Poly-time algorithm to
f decide B N

P ‘ No

Poly-time algorithm to decide A

Y

Implications of Polynomial-Time Reductions

* Purpose. Classify problems according to relative difficulty.

. Desi%? algorithms. If X <, ¥ and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

* Establish intractability. If X <, ¥ and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

* Establish equivalence. If X <, V' and Y <, X , we use notation X =, V.

* Transitivity. It X <, VandV <, Z jthen X <, Z.

P
L 4

Reductions Strategies

* Given two problems, A and B, we say that A 1s polynomially reducible

toB,and write it as A <, B if:

1. There exists a function f that converts the input of A to inputs of B in
polynomial time

2. A(i) = YES & B(f(i)) = YES

* Reductions Strategies
* Reduction by simple equivalence.

* Reduction from a special case to a general case.
* Reduction by encoding with gadgets.

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

32

Example

* We want to show the problem VERTEX-COVER 1s polynomially
reducible to the SET-COVER problem, 1.e.,

VERTEX-COVER =<, SET-COVER

* VERTEX-COVER problem?
* SET-COVER problem?

* Reduction process?

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

33

Example

e Vertex Cover

* MINIMUM VERTEX COVER: Given a graph G = (V, E), find the smallest
subset of vertices S € V, such that for each edge at least one of i1ts endpoints 1s

in S?

* VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S € V such that S| <Kk, and for each edge, at least one of 1ts
endpoints 1s in S?

 Ex. Is there a vertex cover of size <4? Yes.
e Ex. Is there a vertex cover of size < 3? No.

TN

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 34

Example

e Vertex Cover

 SET COVER: Given a set U of elements, a collection S, S,, ..., S, of
subsets of U, and an integer k, does there exist a collection of k of these sets
whose union 1s equal to U?

B U = 2 34516 17 D
e S1={3,7}
* $2={3,4,5,6}
e Ss={1}
e S4={2,4}
e Ss={5}
* Se={1,2,6,7}

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

35

Example

* We want to show the problem VERTEX-COVER is polynomially
reducible to the SET-COVER problem.

* Theorem. VERTEX-COVER <, SET-COVER

* Proof. Given a VERTEX-COVER instance G = (V, E) and k, we
construct a SET-COVER 1nstance (U, S, k) that has a set cover of size k
1ff G has a vertex cover of size k.

e Construction.
e Universe U=FE.
* Include one subset for each node v € V. §,={e € E: e incident to v}.
» The transformation takes linear time on the size of the VC instance.

Y

Example

e Construction.
e Universe U=FE.
* Include one subset for eachnode v € V. §, ={e € E: e incident to v}.
* The transformation takes linear time on the size of the VC instance.

. & :

"e7 e | ".63 e4 i U={ 152, 334a 53 6a7}
LS, ={3,7} Sy={2,4}
©) s 0, L S.={3,4,5,6} Si={5}
N e’ D S.={1} Sp={1,2,6,7}
€1 5 '
k=2 e e e e e

© ©,
vertex cover set cover instance
instance (k = 2) (k =2)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Example

* Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k)
contains a set cover of size k.

That 1s, VC(1) = yes < SC(1(1)) = yes
* Proof. (=)

* Let X € V' be a vertex cover of size £ 1n G.
* Then, Y= {S,. v € X} 1s a set cover of size k.

e, e, e, €, i U={1,273a4,59697} E
r S =4{3.7} S,={2,4}
© e © (G=(3.456)) s.=(5) ;
i ») P S.={1} (8 =4{1,2,6,7})
vertex cover set cover instance
instance (k = 2) (k =2)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Example

* Lemma. VC(1) = yes < SC(1(1)) = yes
* Proof. (=) VC(1) = yes = SC(1(1)) = yes

* VC(1) 1s a yes instance = 1t has a solution; let V' € V be such a solution
|'V’| <k, every edge has at least one end point in V’

* Consider V' = {1, 1, 13, ..., I}, | <k, and therefore, A= {S; ,S;,, ..., 5;, }.

* For the sake of contradiction assume A 1s not a solution to SC({(1)):

* The number of sets in A 1s I <k. Thus, it must be the case that S; US;, U...US; # U
This means there is at least an edge e € U thatisnotin §; US; U ... US;,.

This e is also corresponds to an edge in VC(i), e = (u,v), so S, and S, are not in A, i.e.,
Suw, Sy € A= u,v &V (byconstruction of A)

This means e = (u, v) would not have been covered by V’
So, V’ 1s not solution to VC, which i1s a contradiction.

e
v

Example

* Lemma. VC(1) = yes < SC(1(1)) = yes

* Proof. (&) (VC() = yes < SC(f(i)) = yes) Or (SC(f(i)) = yes = VC(i) = yes)

* Let Y € S be a set cover of size kin (U, S, k)
* Then, X= {v: §, € Y} 1s a vertex cover of size k

in G.

O 8 :

&) e L U={1,2,3,4,5,6,7}
I LS. =43.7} S,={2,4}
O es ®© i (=134561) s.=(5}
e e P Se={1} (5 ={1,2,6,7}

vertex cover
instance (k = 2)

) |

set cover instance
(k =2)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

40

Example

* Lemma. VC(1) = yes & SC({(1)) = yes
* Proof. (&) (VC(3)=yes & SC(f(i)) = yes) Or (SC(f(i)) = yes = VC(i) = yes)

* SC(f(1)) 1s a yes instance = it has a solution; let A= {S; , §;

S;,} be such a

lz, e o0y

solution.
« = l1<kand$§; US; U...US; = U (by definition of SC)
* Consider the vertex set V' = {1}, 15, 1, ..., 1;}
* For the sake of contradiction assume V’ is not a solution to VC(i):

The number of vertices in V’ 1s 1 < k. Thus, it must be breaking the edge covering requirement
of VC.

Therefore, there must be at least an edge e € Esuch thatu € V', v & V'
This implies S;, and S, were not included in solution A.
By construction of f(i), e = (u, v)€U, and S, S,, were the only sets containing e.

Thus,e € 5;, US;, U ... US§;, L.e., e is not covered by the solution set A. So, A is not a
solution (Contradiction)

= V’is a solution to VC(i)

P
L 4

NP-Completeness (Formal Definition)

* Aproblem Y 1s NP-hard if X <, Y forall X € NP

* A problem 1s NP-hard if and only if a polynomial-time algorithm for it implies
a polynomial-time algorithm for every problem in NP

* NP-hard problems are at least as hard as any NP problem

* Aproblem Y 1s NP-complete if:
1. Y e NP
2. Y 1s NP-hard

NP-Complete

P=NP

= NP-Complete

https://en.wikipedia.org/wiki/P_versus_NP_problem

N
‘ .\‘ ’
4

Establishing NP-Completeness

* Establishing NP-completeness = using “reduction”

* Once we establish the first "natural" NP-complete problem, others fall
like dominoes!

* Recipe to establish NP-completeness of problem Y.
* Stepl. Show that Y 1s in NP. (Y € NP)

* Step 2. Choose an NP-complete problem X.

* Step 3. Prove that X <, Y (poly-time reduction).

e
v

Establishing NP-Completeness

* Establishing NP-completeness = using “reduction”

* Once we establish the first "natural" NP-complete problem, others fall
like dominoes!

* Recipe to establish NP-completeness of problem Y.
* Stepl. Show that Y 1s in NP. (Y € NP)

e Step 2. Choose an NP-complete problem X.

* Step 3. Prove that X <, Y (poly-time reduction).

Why does it work?

e
v

Establishing NP-Completeness

* Recipe to establish NP-completeness of problem Y.

* Stepl. Show that Y 1s in NP. (Y € NP)
e Step 2. Choose an NP-complete problem X.

* Step 3. Prove that X <, Y (poly-time reduction).

* Justification: If X 1s an NP-complete problem, and Y 1s a problem 1n
NP with the property that X <, Y then Y 1s NP-complete.

* Proof.
* Let W be any problem in NP. Then, W <, X <Y
* By transitivity, W < Y.

* Hence, Y 1s NP-complete. 11
by definition of NPC

e
v

Establishing NP-Completeness

* Recipe to establish NP-completeness of problem Y.
* Stepl. Show that Y 1s in NP. (Y € NP)

* Describe how a potential solution will be represented

* Describe a procedure to check whether the potential solution 1s a correct solution to the
problem instance, and argue that this procedure takes polynomial time

* Step 2. Choose an NP-complete problem X.

* Step 3. Prove that X <, ¥ (X 1s poly-time reducible to Y).

* Describe a procedure f that converts the inputs 1 of X to inputs of Y in polynomial time
» Show that the reduction is correct by showing that |X(i) = YES < Y(f (i)) = YES

Note this is an “if and only if”’ condition, so proofs are needed for both directions.

%> CS-3510: Design and Analysis of Algorithms | Summer 2022

46

Establishing NP-Completeness

* Important note about step 2 and 3:

* To establish NP-completeness of problem Y, we show that
some other NP-complete problem X 1s polynomially
reducable to this algorithm.

* Note the reduction 1s from algorithm X to Y (X <p Y), not
the reverse direction!

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Revisit “Is P = NP?”

* Theorem. Suppose Y i1s an NP-complete problem. Y 1s solvable in
poly-time 1f and only 1f P = NP.

* Proof (&) If P=NP then Y 1s in P. Hence, Y can be solved in poly-time.

* Proof (=) Suppose Y can be solved in poly-time.

* Let X be any problem 1n NP.
Then, we know that X <, Y by definition
of NP-complete and Y being NP-complete
problem. Then we can solve X in poly-time
by solving Y in poly-time. This implies any

NP-Hard

NP-Hard

NP-Complete

P=NP

: 3 . . = NP-Complete
problem X in NP is also in P, 1.e., NP C P, s |
« We already know P € NP. Thus, P=NP. S~ GRNN
P = NP P = NP
https://en.wikipedia.org/wiki/P_versus_NP_problem
L7
@ o

Examples of NPC problems

* Shortest simple path

* Given a graph G = (V, E) find a shortest path from a source to all other
vertices

* Polynomial solution: Bellman-Ford O(VE) (complexity class P)

* Longest simple path
* Given a graph G = (V, E) find a longest path from a source to all other vertices
* NP-complete

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Examples of NPC problems

 Euler tour

* G=(V, E) a connected, directed graph find a cycle that traverses each edge of

G exactly once (may visit a vertex multiple times)
* Polynomial solution O(E)

* Hamiltonian cycle

* G=(V, E) a connected, directed graph find a cycle that visits each vertex of G

exactly once
* NP-complete

%> CS-3510: Design and Analysis of Algorithms | Summer 2022

50

The First NPC Problem

* The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook—Levin theorem)

* Satisfiability problem: given a logical expression @, find an
assignment of True/False values to binary variables x; that causes @ to
evaluate to T.

* Ex. O=x; V - x, N\ x3 V x4

e
v

Quick Review

* Boolean variables: take on values T (or 1) or F (or 0)

* Literal: variable or negation of a variable, e.g., x,, =X5

* Notation: =—-1x, = X, =notx,
X1 Xy X1\ Xy x1V x3
(AND) (OR)
T T T T
T F F T
0 T F T
0 F F F

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

52

The First NPC Problem

* Satisfiability problem: given a logical expression @, find an
assignment of True/False values to binary variables x; that causes @ to
evaluate to T.

* SAT is in NP: given a value assignment, check the Boolean logic of &
evaluates to True (linear time)

* The satisfiability (SAT) problem was the first problem shown to be
NP-complete (Cook—Levin theorem)

e
v

A problem Y is NP-hard if X g, Y forall X € NP
NP-hard problems are at least as hard as any NP problem

NP-hard

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

NP-complete

Candidate can be evaluated NP
in poly-time

Solvable in poly-time P

A problem Y is NP-hard if X
NP-hard problems are at least

p Y forall X € NP
hard as any NP problem

NP-hard

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

NP-complete

All problems in NP can

; polynomially be reduced
' to SAT '

Candidate can be evaluated
in poly-time All problems in NP : :
. SAT 1s at least as hard as

' all problems in NP

Solvable in poly-time

A problem Y is NP-hard if X g, Y forall X € NP

NP-hard

NP-hard problems are at least

Vertex Graph

Mag-Cut Cover Coloring

' Once we establish the

' first "natural" NPC

. problem, others fall like
. dominoes!

A problem Y is NP-complete if:
1. Y eNP
2. Y is NP-hard

. All problems in NP can
' polynomially be reduced |
' to SAT

=p

Candidate can be evaluated =
All problems in NP

in poly-time

SAT is at least as hard as
 all problems in NP

Solvable in poly-time

{)

hard as any NP problem

References

* The lecture slides are heavily based on the suggested textbooks and the corresponding published
lecture notes:

» Slides by Umit Catalyurek, Georgia Institute of Technology.
(Based on slides by Bistra Dilkina, Anne Benoit, Jennifer Welch, George Bebis, and Kevin Wayne)

* CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

» KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

117

http://www.cs3510.com/policies/

