CS-3510:
 Design and Analysis of Algorithms

NP Completeness I

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

NP-Completeness

- So far, we have seen a lot of good news!
- Problems can be solved quickly/efficiently (i.e., linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
- There exist many important problems that cannot be solved quickly.
- NP-complete problems really come up all the time!

NP-Completeness

- Why should we care?
- Knowing that they are hard lets you stop beating your head against a wall trying to solve them!
- Restrict the problem: find special restrictions/variants to the problem for which there is a polynomial time algorithm.
- Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
- Solve approximately: come up with a method that finds solutions provably close to the optimal.
- Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Optimization vs. Decision Problems

- Decision problems
- Given an input and a question regarding a problem, determine if the answer is yes or no
- Optimization problems
- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study

Optimization vs. Decision Problems

- Casting optimization problems as decision problems

- Ex.
- Problem: shortest path problem in unweighted graphs
- Optimization problem: Find a path between u and v that uses the fewest edges
- Decision problem: Does a path exist from u to v consisting of at most k edges?

$$
\begin{aligned}
& \text { Minimum / least / shortest } / \ldots \rightarrow \text { at most } k \\
& \text { Maximum / greatest / longest } / \ldots \rightarrow \text { at least } k
\end{aligned}
$$

Class "P"

- Class \mathbf{P} consists of [decision] problems that are solvable in polynomial time
- Recall from the first lecture:
- [slide \#36] Polynomial time \rightarrow Running time is $\mathrm{O}\left(n^{k}\right)$ for some constant $k>0$.
- Examples
- Linear search O(n)
- Dynamic programming solutions $\left(\mathrm{O}(\mathrm{n}), \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}\left(\mathrm{n}^{3}\right), \ldots\right)$
- Sorting (O(n^{2}), O(nlogn))
- Divide-and-conquer solutions
- Graph algorithms $\mathrm{O}(\mathrm{n}+\mathrm{m}), \mathrm{O}(\mathrm{mlogn}), \ldots$
- Non-polynomial time $\rightarrow \mathrm{O}\left(2^{n}\right), \mathrm{O}\left(a^{n}\right), \mathrm{O}(n!), \mathrm{O}\left(n^{n}\right), \ldots$

Class "P"

- Class \mathbf{P} consists of [decision] problems that are solvable in polynomial time
- Recall from the first lecture:
- [slide \#36] Polynomial time \rightarrow Running time is $\mathrm{O}\left(n^{k}\right)$ for some constant $k>0$.
- Examples
- Linear search O(n)
- Dynamic programming solutions $\left(\mathrm{O}(\mathrm{n}), \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}\left(\mathrm{n}^{3}\right), \ldots\right)$

Problems in P are
Considered/called tractable

Problem not in P are intractable

- Non-polynomial time $\rightarrow \mathrm{O}\left(2^{n}\right), \mathrm{O}\left(a^{n}\right), \mathrm{O}(n!), \mathrm{O}\left(n^{n}\right), \ldots$

Class "P"

- Class \mathbf{P} consists of [decision] problems that are solvable in polynomial time
- Problems in P are Considered/called tractable
- Problem not in P are intractable
- Note this does not mean that non-polynomial algorithms are always worst than polynomial algorithms!
- $\mathrm{O}\left(n^{100 \ldots . .0000}\right)$ technically tractable (polynomial time), but practically impossible.
- $\mathrm{O}\left(n^{\log \log \log n}\right)$ technically intractable, but practiclly easy to solve.
- Recall the "asymptotic" meaning of running time.

Class "NP"

- First of all: NP does NOT stand for not-P!

$\mathbf{N P}=\underline{\text { Nondeterministic Polynomial }}$

- NP is the class of problems for which a candidate solution can be verified in polynomial time.
- P is a subset of $\mathrm{NP}(\mathrm{P} \subseteq \mathrm{NP})$

Class "NP"

- First of all: NP does NOT stand for not-P!

$\mathbf{N P}=\underline{\text { Nondeterministic Polynomial }}$

- NP is the class of problems for which a candidate solution can be verified in polynomial time.
- P is a subset of $\mathrm{NP}(\mathrm{P} \subseteq \mathrm{NP})$

Class "NP"

- Nondeterministic algorithms entail a two-stage procedure:

1. Nondeterministic "guessing" stage

- Generate randomly an arbitrary candidate solution (三 "certificate")

2. Deterministic "verifying" stage

- Take the certificate and the instance to the problem and returns YES if the certificate represents a solution (verifying in polynomial time)

Class "NP"

- Nondeterministic algorithms entail a two-stage procedure:

Note in NP algorithms the verification step is polynomial

1. Nondeterministic "guessing" stage

- Generate randomly an arbitrary candidate solution (三 "certificate")

2. Deterministic "verifying" stage

- Take the certificate and the instance to the problem and returns YES if the certificate represents a solution (verifying in polynomial time)

Class "NP"

- Nondeterministic algorithms entail a two-stage procedure:

But what does it mean "verifying" a candidate solution?

1. Nondeterministic "guessing" stage

- Generate randomly an arbitrary candidate solution (三 "certificate")

2. Deterministic "verifying" stage

- Take the certificate and the instance to the problem and returns YES if the certificate represents a solution (verifying in polynomial time)

Class "NP"

- Difference between solving a problem and verifying a candidate solution:
- Solving a problem: is there a path in graph G from vertex u to vertex v with at most k edges?
- Verifying a candidate solution: is $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}$ a path in graph G from vertex u to vertex v with at most k edges?

Class "NP" solving vs verifying

- Difference between solving a problem and verifying a candidate solution:
- Example:
- A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex exactly once.

- Solving a problem: is there a Hamiltonian cycle in graph G?
- Verifying a candidate solution: is $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{m}}$ a Hamiltonian cycle on graph G ?

Class "NP" solving vs verifying

- Example:

- A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex exactly once.
- Solving a problem: is there a Hamiltonian cycle in graph G?
- Verifying a candidate solution: is $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{m}}$ a Hamiltonian cycle on graph G ?
- Certificate: A list of n nodes.
- Certifier: Check that the list contains each node in V exactly once, and that there is an edge between each pair of adjacent
 nodes in the permutation.
- Conclusion: HAM-CYCLE is in NP.

Class "NP" solving vs verifying

- Intuitively, solving a problem from scratch seems much harder (and more time consuming) in comparison to just verifying whether a candidate solution can solve the problem or not.
- Note if there are many candidate solutions to check, then even if each individual one is quick to check, overall, it can take a long time.

Pvs. NP

- Is $\mathrm{P}=\mathrm{NP}$?
- Mentioned earlier that any problem in P is also in NP. So, P is a subset of NP ($\mathrm{P} \subseteq \mathrm{NP}$)
- But the big (and open) question is whether $\mathrm{NP} \subseteq \mathrm{P}$, and so $\mathrm{P}=\mathrm{NP}$.

P vs. NP

- Is $\mathrm{P}=\mathrm{NP}$?
- Mentioned earlier that any problem in P is also in NP. So, P is a subset of NP ($\mathrm{P} \subseteq \mathrm{NP}$)
- But the big (and open) question is whether $\mathrm{NP} \subseteq \mathrm{P}$, and so $\mathrm{P}=\mathrm{NP}$.

What does it mean?

P vs. NP

- Is $\mathrm{P}=\mathrm{NP}$?

- Mentioned earlier that any problem in P is also in NP. So, P is a subset of NP ($\mathrm{P} \subseteq \mathrm{NP}$)
- But the big (and open) question is whether $\mathrm{NP} \subseteq \mathrm{P}$, and so $\mathrm{P}=\mathrm{NP}$.
- It means if it is always easy to check a candidate solution, should it also be easy to find a solution?
- Answer? Most computer scientists believe that this is false, but we do not have a proof

P vs. NP

- Is $\mathrm{P}=\mathrm{NP}$?
- Answer? Most computer scientists believe that this is false, but we do not have a proof
- Therefore, there are two possibilities/beliefs:

NP-Complete (NPC)

- NP-complete problems are a class of "hardest" problems in NP.
- If you can solve an NP-complete problem, then you can solve all NP problems (show later).
- Hence, if any NP-complete problem can be solved in polynomial time, then all problems in NP can be, and thus $\mathrm{P}=\mathrm{NP}$.
- Precise/formal definition coming later...

Possible Worlds

- Therefore, there are two possibilities:

Reductions

- Reduction from A to B is showing that we can solve A using the algorithm that solves B
- We say that problem A is easier than problem B, and
- We write $A \leq B$

Reductions

- Reduction from A to B is showing that we can solve A using the algorithm that solves B
- We say that problem A is easier than problem B, and
- We write $A \leq B$

Reductions

- $A \leq B$: Reduction from A to B is showing that we can solve A using the algorithm that solves B
- If we have an oracle for solving B, then we can solve A by making polynomial number of computations and polynomial number of calls to the oracle for B
- We can transform the inputs of A to inputs of B

Reductions

- Before discussing further regarding reduction in NPC, note that we can also do reductions on polynomial time (poly-time) algorithms.
- Examples:
- Transforming a given problem to a graph, and solving the problem using graph algorithms (for example, SCC)
- Solving all-pairs shortest path problem using multiple (polynomial number of) calls to Dijkstra's algorithm

Polynomial Reductions

- Given two problems, A and B, we say that A is polynomially reducible to B , and write it as $A \leq_{p} B$ if:

1. There exists a function f that converts the input of A to inputs of B in polynomial time
2. $A(i)=\mathrm{YES} \Leftrightarrow B(f(i))=\mathrm{YES}$

Proving Polynomial Time

1. Use a polynomial time reduction algorithm to transform A into B .
2. Run a known polynomial time algorithm for B.
3. Use the answer for B as the answer for A .

Implications of Polynomial-Time Reductions

- Purpose. Classify problems according to relative difficulty.
- Design algorithms. If $X \leq_{p} Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
- Establish intractability. If $X \leq_{p} Y$ and X cannot be solved in polynomialtime, then Y cannot be solved in polynomial time.
- Establish equivalence. If $X \leq_{p} Y$ and $Y \leq_{p} X$, we use notation $X \equiv_{p} Y$.
- Transitivity. If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$.

Reductions Strategies

- Given two problems, A and B, we say that A is polynomially reducible to B , and write it as $A \leq_{p} B$ if:

1. There exists a function f that converts the input of A to inputs of B in polynomial time
2. $A(i)=$ YES $\Leftrightarrow B(f(i))=$ YES

- Reductions Strategies
- Reduction by simple equivalence.
- Reduction from a special case to a general case.
- Reduction by encoding with gadgets.

Example

- We want to show the problem VERTEX-COVER is polynomially reducible to the SET-COVER problem, i.e.,

VERTEX-COVER \leq_{P} SET-COVER

- VERTEX-COVER problem?
- SET-COVER problem?
- Reduction process?

Example

- Vertex Cover

- MINIMUM VERTEX COVER: Given a graph $G=(V, E)$, find the smallest subset of vertices $\mathrm{S} \subseteq \mathrm{V}$, such that for each edge at least one of its endpoints is in S ?
- VERTEX COVER: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset of vertices $S \subseteq V$ such that $|\mathbf{S}| \leq \mathbf{k}$, and for each edge, at least one of its endpoints is in S ?
- Ex. Is there a vertex cover of size ≤ 4 ? Yes.
- Ex. Is there a vertex cover of size ≤ 3 ? No.

Example

- Vertex Cover
- SET COVER: Given a set U of elements, a collection $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}}$ of subsets of U , and an integer k , does there exist a collection of k of these sets whose union is equal to U ?
- Ex. $\mathrm{U}=\{1,2,3,4,5,6,7\} \mathrm{k}=2$
- $\mathrm{S}_{1}=\{3,7\}$
- $\mathrm{S}_{2}=\{3,4,5,6\}$
- $\mathrm{S}_{3}=\{1\}$
- $\mathrm{S}_{4}=\{2,4\}$
- $\mathrm{S}_{\mathrm{s}}=\{5\}$
- $\mathrm{S}_{6}=\{1,2,6,7\}$

Example

- We want to show the problem VERTEX-COVER is polynomially reducible to the SET-COVER problem.
- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given a VERTEX-COVER instance $G=(V, E)$ and k, we construct a SET-COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.
- Construction.
- Universe $U=E$.
- Include one subset for each node $v \in V: S_{v}=\{e \in E: e$ incident to $v\}$.
- The transformation takes linear time on the size of the VC instance.

Example

- Construction.

- Universe $U=E$.
- Include one subset for each node $v \in V: S_{v}=\{e \in E: e$ incident to $v\}$.
- The transformation takes linear time on the size of the VC instance.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

vertex cover instance ($k=2$)
set cover instance
($k=2$)

Example

- Lemma. $G=(V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

$$
\text { That is, } \operatorname{VC}(\mathrm{i})=\text { yes } \Leftrightarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=\text { yes }
$$

- Proof. (\Rightarrow)
- Let $X \subseteq V$ be a vertex cover of size k in G.
- Then, $Y=\left\{S_{v}: v \in X\right\}$ is a set cover of size k.

vertex cover
instance $(k=2)$
set cover instance
($k=2$)

Example

- Lemma. $\mathrm{VC}(\mathrm{i})=$ yes $\Leftrightarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes
- Proof. $(\Rightarrow) \mathrm{VC}(\mathrm{i})=$ yes $\Rightarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes
- $\mathrm{VC}(\mathrm{i})$ is a yes instance \Rightarrow it has a solution; let $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ be such a solution $\left|V^{\prime}\right| \leq k$, every edge has at least one end point in V^{\prime}
- Consider $\mathrm{V}^{\prime}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \ldots, \mathrm{i}_{1}\right\}, \mathrm{l} \leq \mathrm{k}$, and therefore, $\mathrm{A}=\left\{S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{l}}\right\}$.
- For the sake of contradiction assume A is not a solution to $\mathrm{SC}(\mathrm{f}(\mathrm{i}))$:
- The number of sets in A is $1 \leq \mathrm{k}$. Thus, it must be the case that $S_{i_{1}} \cup S_{i_{2}} \cup \ldots \cup S_{i_{l}} \neq U$
- This means there is at least an edge $e \in U$ that is not in $S_{i_{1}} \cup S_{i_{2}} \cup \ldots \cup S_{i_{l}}$.
- This e is also corresponds to an edge in $\mathrm{VC}(\mathrm{i}), e=(u, v)$, so S_{u} and S_{v} are not in A, i.e., $S_{u}, S_{v} \notin A \Rightarrow \mathrm{u}, \mathrm{v} \notin V^{\prime}$ (by construction of A)
- This means $e=(u, v)$ would not have been covered by V^{\prime}
- So, V^{\prime} is not solution to VC , which is a contradiction.

Example

- Lemma. $\mathrm{VC}(\mathrm{i})=$ yes $\Leftrightarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes
- Proof. $(\Leftarrow) \quad(\mathrm{VC}(\mathrm{i})=\mathrm{yes} \Leftarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes $)$ Or $(\mathrm{SC}(\mathrm{f}(\mathrm{i}))=\mathrm{yes} \Rightarrow \mathrm{VC}(\mathrm{i})=\mathrm{yes})$
- Let $Y \subseteq S$ be a set cover of size k in (U, S, k)
- Then, $X=\left\{v: S_{v} \in Y\right\}$ is a vertex cover of size k in G.

vertex cover
instance $(k=2)$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
\hline
\end{array}
$$

set cover instance
(k = 2)

Example

- Lemma. $\operatorname{VC}(\mathrm{i})=$ yes $\Leftrightarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes
- Proof. $(\Leftarrow) \quad(\mathrm{VC}(\mathrm{i})=$ yes $\Leftarrow \mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes $) \underline{\mathrm{Or}}(\mathrm{SC}(\mathrm{f}(\mathrm{i}))=$ yes $\Rightarrow \mathrm{VC}(\mathrm{i})=$ yes $)$
- $\mathrm{SC}(\mathrm{f}(\mathrm{i}))$ is a yes instance \Rightarrow it has a solution; let $\mathrm{A}=\left\{S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{l}}\right\}$ be such a solution.
$\cdot \Rightarrow 1 \leq \mathrm{k}$ and $S_{i_{1}} \cup S_{i_{2}} \cup \ldots \cup S_{i_{l}}=U$ (by definition of SC)
- Consider the vertex set $\mathrm{V}^{\prime}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \ldots, \mathrm{i}_{1}\right\}$
- For the sake of contradiction assume V^{\prime} is not a solution to $\mathrm{VC}(\mathrm{i})$:
- The number of vertices in V^{\prime} is $1 \leq k$. Thus, it must be breaking the edge covering requirement of VC.
- Therefore, there must be at least an edge $e \in E$ such that $\mathrm{u} \notin V^{\prime}, \mathrm{v} \notin V^{\prime}$
- This implies S_{u} and S_{v} were not included in solution A.
- By construction of $\mathrm{f}(\mathrm{i}), e=(u, v) \in U$, and S_{u}, S_{v} were the only sets containing e.
- Thus, $e \notin S_{i_{1}} \cup S_{i_{2}} \cup \ldots \cup S_{i_{l}}$, i.e., e is not covered by the solution set A. So, A is not a solution (Contradiction)
- $\Rightarrow \mathrm{V}^{\prime}$ is a solution to $\mathrm{VC}(\mathrm{i})$

NP-Completeness (Formal Definition)

- A problem Y is NP-hard if $X \leq_{p} Y$ for all $X \in \mathbf{N P}$
- A problem is NP-hard if and only if a polynomial-time algorithm for it implies a polynomial-time algorithm for every problem in NP
- NP-hard problems are at least as hard as any NP problem
- A problem Y is NP-complete if:

1. $Y \in \mathbf{N P}$
2. Y is NP-hard

Establishing NP-Completeness

- Establishing NP-completeness \rightarrow using "reduction"
- Once we establish the first "natural" NP-complete problem, others fall like dominoes!
- Recipe to establish NP-completeness of problem Y.
- Step1. Show that Y is in NP. $(Y \in \mathbf{N P})$
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$ (poly-time reduction).

Establishing NP-Completeness

- Establishing NP-completeness \rightarrow using "reduction"
- Once we establish the first "natural" NP-complete problem, others fall like dominoes!
- Recipe to establish NP-completeness of problem Y.
- Step1. Show that Y is in NP. $(Y \in \mathbf{N P})$
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$ (poly-time reduction).

Why does it work?

Establishing NP-Completeness

- Recipe to establish NP-completeness of problem Y.
- Step1. Show that Y is in NP. $(Y \in \mathbf{N P})$
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$ (poly-time reduction).
- Justification: If X is an NP-complete problem, and Y is a problem in NP with the property that $\mathrm{X} \leq_{\mathrm{P}} \mathrm{Y}$ then Y is NP-complete.
- Proof.
- Let W be any problem in NP. Then, $\mathrm{W} \leq_{\mathrm{P}} \mathrm{X} \leq_{\mathrm{P}} \mathrm{Y}$
- By transitivity, $\mathrm{W} \leq_{\mathrm{P}} \mathrm{Y}$.
- Hence, Y is NP-complete.

Establishing NP-Completeness

- Recipe to establish NP-completeness of problem Y.

- Step1. Show that Y is in NP. $(Y \in \mathbf{N P})$
- Describe how a potential solution will be represented
- Describe a procedure to check whether the potential solution is a correct solution to the problem instance, and argue that this procedure takes polynomial time
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$ (X is poly-time reducible to Y).
- Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
- Show that the reduction is correct by showing that $X(i)=$ YES $\Leftrightarrow Y(f(i))=\mathrm{YES}$ Note this is an "if and only if" condition, so proofs are needed for both directions.

Establishing NP-Completeness

- Important note about step 2 and 3:
- To establish NP-completeness of problem Y, we show that some other NP-complete problem X is polynomially reducable to this algorithm.
- Note the reduction is from algorithm X to $\mathrm{Y}\left(\mathrm{X} \leq_{\mathrm{P}} \mathrm{Y}\right)$, not the reverse direction!

Revisit "Is P = NP?"

- Theorem. Suppose Y is an NP-complete problem. Y is solvable in poly-time if and only if $\mathrm{P}=\mathrm{NP}$.
- Proof (\Leftarrow) If $\mathrm{P}=\mathrm{NP}$ then Y is in P . Hence, Y can be solved in poly-time.
- Proof (\Rightarrow) Suppose Y can be solved in poly-time.
- Let X be any problem in NP. Then, we know that $X \leq_{P} \mathrm{Y}$ by definition of NP-complete and Y being NP-complete problem. Then we can solve X in poly-time by solving Y in poly-time. This implies any problem X in NP is also in P , i.e., $\mathrm{NP} \subseteq \mathrm{P}$.
- We already know $\mathrm{P} \subseteq \mathrm{NP}$. Thus, $\mathrm{P}=\mathrm{NP}$.

[^0]
Examples of NPC problems

- Shortest simple path
- Given a graph $G=(V, E)$ find a shortest path from a source to all other vertices
- Polynomial solution: Bellman-Ford O(VE) (complexity class P)
- Longest simple path
- Given a graph $G=(V, E)$ find a longest path from a source to all other vertices
- NP-complete

Examples of NPC problems

- Euler tour

- $G=(V, E)$ a connected, directed graph find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)
- Hamiltonian cycle
- $G=(V, E)$ a connected, directed graph find a cycle that visits each vertex of G exactly once
- NP-complete

The First NPC Problem

- The satisfiability (SAT) problem was the first problem shown to be NP-complete (Cook-Levin theorem)
- Satisfiability problem: given a logical expression Φ, find an assignment of True/False values to binary variables x_{i} that causes Φ to evaluate to T .
- Ex.

$$
\Phi=x_{1} \vee \neg x_{2} \wedge x_{3} \vee \neg x_{4}
$$

Quick Review

- Boolean variables: take on values T (or 1) or F (or 0)
- Literal: variable or negation of a variable, e.g., $x_{2}, \neg x_{2}$
- Notation: $\neg x_{2}=\overline{x_{2}}=\operatorname{not} x_{2}$

$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{1}} \wedge \boldsymbol{x}_{\mathbf{2}}$ (AND)	$\boldsymbol{x}_{\mathbf{1}} \vee \boldsymbol{x}_{\mathbf{2}}$ (OR)
T	T	T	T
T	F	F	T
0	T	F	T
0	F	F	F

The First NPC Problem

- Satisfiability problem: given a logical expression Φ, find an assignment of True/False values to binary variables x_{i} that causes Φ to evaluate to T .
- SAT is in NP: given a value assignment, check the Boolean logic of Φ evaluates to True (linear time)
- The satisfiability (SAT) problem was the first problem shown to be NP-complete (Cook-Levin theorem)

References

- The lecture slides are heavily based on the suggested textbooks and the corresponding published lecture notes:
- Slides by Umit Catalyurek, Georgia Institute of Technology.
(Based on slides by Bistra Dilkina, Anne Benoit, Jennifer Welch, George Bebis, and Kevin Wayne)
- CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., \& Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- KT: Kleinberg, J., \& Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

[^0]: https://en.wikipedia.org/wiki/P_versus_NP_problem

