CS-3510:
Design and Analysis of Algorithms

Flow Network

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

~ QPart 2:
.~ -Recursion
" -Divide-and-Conquer

=

-Introduction, /~ dPart 3 T
-Analysis of Algorithms . ~Dynamic Progr ammmg/)
-Asymptotic Order of Growth | o

-Big-O Notation
We are here!

OPart 6:

. -Network Flow

OPart 7:
-NP-Completeness

QPart 4:
-Greedy Algorithm

QPart 5: Graph Algorithm
- Definition, Traversal

- Grid Problems

- Minimum Spanning Tree
- Shortest Path Problem
- Topological Sorting

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Graph

* Graph definition and representation

* Adjacency matrix
* Adjacency list

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
« Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
« Topological sorting * Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
* Connected components

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Flow Network

A flow network is a tuple G=(V,E, s, t,¢).
* Digraph (V, E) with source s€V and sink t € V.
* Capacity c(e) =0 for each e €E. \

assume all nodes are reachable from s

Intuition. Material flowing through a transportation network;

capacity

material originates at source and is sent to sink.

NGEGR

9 :(j:l\\\\\

10 15 15 10
1 PROTTEN
s 5 >() 8 >(——10——(1)
/
s 4 \ 6 15 10
@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Flow Network: Min-Cut Problem

Def. An st-cut (cut) is a partition (4, B) of the nodes with s€A and r € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B)= 3 o) O

e out of A /
—

10

< 5
IS

Y

_ I
capacity = 10+5+]5=

Y

Q)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Flow Network: Min-Cut Problem

Def. An st-cut (cut) is a partition (4, B) of the nodes with s€A and r € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B)= 3 o) O

e out of A /
—

0

1
&)
Cut notations: (A, B) = (A, V-A) = (A, V\A)
I'S
capacity=10+5 +]5=

Y

Q)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Flow Network: Min-Cut Problem

Def. An st-cut (cut) is a partition (4, B) of the nodes with s €A and ¢t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

ca?o(A,B): Z c(e)

—) O

/C e out of A /o >
10 10
A 4 4 4 4
> :@ 5
y / don’t include edges 15

from Bto A
Y
_ N
capacity=10+5+ 15 =

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Y v
Capacity=10+8+]6= .—16_)

Flow Network: Min-Cut Problem

Def. An st-cut (cut) is a partition (4, B) of the nodes with s€ A and t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A /C\ <\
Min-cut problem. Find a cut of minimum capacity. 10 \

o—:—>0 "0

capacity =10 + 8 + IO=

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Flow Network: Max-Flow Problem

Def. An s-flow (flow) fis a function that satisfies:
* For each e€E: 0 < fle) < cle) [capacity]
* ForeachvevV-{s,}: >_ fle) =) fle [flow conservation]

e in tow e out of v

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Flow Network: Max-Flow Problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreach e€E: 0= fle)-<<(e) [capacity]
* ForeachveV-{s,i}:) flee =), f(¢ [flow conservation]
e in to v e out of v flow capacity
inflowatv = 5+5+0 =10
\5/9 outflowatv = 10+0 =10
\Q\\Q S, 0/15 *’//0

Ry
N
—— 5§ e—

-

10/
‘0
& Oi£5 Q5\

10 = ¢
O

10/16

% CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Flow Network: Max-Flow Problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0 < f(e) < cle) [capacity]
* ForeachveV-{s,1}: > flee =) f(e [flow conservation]

e in to v e out of v

Def. The value of a flowf is: wal(f) =) fle) —) f(e)

e out of s e in to s

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

11

Flow Network: Max-Flow Problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < f(e) < cle) [capacity]
* Foreachvev—{s,t}: Y 6 fle =)., f(e [flow conservation]
e in to v e out of v

Def. The value of a flow f is: val(f) =) f(e) — Y f(e)

e out of s e in to s
5/9
Q 8 S
\ Fa =
\ 7 7
O 8y 0
o—s/s—) 5/8 10/10
oz \\°
/¢ KN
value=5+10+10=@ \
10/16

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

12

Flow Network: Max-Flow Problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0 < f(e) < cle) [capacity]
* ForeachveV-{s,t}: Y fle) =) f(e [flow conservation]

e in to v e out of v

Def. The value of a flow f is: wval(f) =) fle) — Y f(e)

e out of s e in to s
8/9
Max-flow problem. Find a flow of maximum value. /
Q l P
\0\\ 1%; ‘0
0—5/5—) 8/8 10/10
’ O
\?//\5‘ / 3/6‘ \Q\
value = 10+5+13 = \
13/16
@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for each edge e € E.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

14

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for each edge e € E.

flow capacity
flow network G and flow f \ /
O /4 O
O 0/2 0, 0/6 &
O o o value of flow

/
<:> 0/10 <:> 0/9 <:> 0/10 <:> 0

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

15

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.

* Find an s~r path P where each edge has f(e) < c(e).

flow network G and flow f

0/4 O

& e O/Q\Q_o,m_,@o

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

16

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

Jono O 0/9\0_3/10_)@ 0+8=28

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

17

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.

« Repeat until you get stuck.

flow network G and flow f

0/4 ()
~_ A
I 0
Q O 2 9/2 & 0/6 >
N\ %\ l 2 & /0
/ AN / — 10 —~
’ § ' 0/]O ' —0/9ﬁ1,\ /—'8'/]0 *I\t { 8 +2=10

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

18

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.

« Repeat until you get stuck.

flow network G and flow f

‘:I,//" - "'\.\»:‘ O 4 I’,/"ﬁ - ‘-\\-.‘[
_ / 4
\ =
S | B
N 2/2 & 6 0/6 g
\Q\ -8 | ‘0
i B 6 v 8 p ! \ i
',/ Y y N / \\ '/ \._
'\) /'_ '9‘/]O »‘:\ /V— -2-/ 9 q[\ J]0 /]0 ’.\ t /,:

10+6=16

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

19

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for each edge ¢ EE.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.

» Repeat until you get stuck.
ending flow value = 16

flow network G and flow f

() 0/4 ()
A N
Q 6
N 2/2 & 6/6 L
\Q\ / “ & / / 0
X VY T 0
'.,\s/, 6/10 S /; 8/9 1‘\) 10/10 l.\t/,;

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

20

Ford—Fulkerson Algorithm

* Toward a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for each edge ¢ EE.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.

» Repeat until you get stuck.
but max-flow value = 19

flow network G and flow f

() 3/4 ()
A A
Q 9
N 0/2 > 6/6 g
(X VR)\ D\
ll'\.i_/’ 9/10 \\\M‘/J 9/9 Il\) 10/10 I‘\ i/,.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

21

Ford—Fulkerson Algorithm

* Q. Why does the greedy algorithm fail?

* A. Once greedy algorithm increases flow on an edge, it never
decreases it.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

22

Ford—Fulkerson Algorithm

* Q. Why does the greedy algorithm fail?

* A. Once greedy algorithm increases flow on an edge, it never
decreases 1it.

flow network G

* Ex. \
Consider flow network G . S

The unique max flow f* has f *(v, w) = 0.
Greedy algorithm could choose s—v—w—t as first path.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

23

Ford—Fulkerson Algorithm

* Q. Why does the greedy algorithm fail?
* A. Once greedy algorithm increases flow on an edge, it never

decreases it. e C
e Bottom line. v 2 >(1)
Need some mechanism to
“undo” a bad decision. TK T
2 l 2

e Ex. \
Consider flow network G . ;

The unique max flow f* has f *(v, w) = 0.
Greedy algorithm could choose s—v—w—t as first path.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

24

Residual Network

Original edge. e=(u,v) € E.

original flow network G

* Flow f(e). @ ST :

* Capacity c(e). / \

flow capacity

Reverse edge. e = (v, u).
* “Undo” flow sent.

residual network Gy residual

Residual capacity. 4 capacity

U 11
= {c(e)—f(e) ifee E Q\ :

f(ereverse) if ereverse E E

A

reverse edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Residual Network

Original edge. e=(u,v) € E. original flow network G

* Flow f(e). : :
* Capacity c(e). /6 / 1»7\
flow capacity
Reverse edge. e™Ve™ = (v, u).
« “Undo” flow sent.

residual network G residual
Residual capacity. ‘7 capacity
u 11 > vV
s (e) {c(e) — f(e) ife€eE 4
\C)= : 6
reverse f reverse e E
e e edges with positive \

residual capacity

Residual network. G,= (V, E;, s, t, Cf). / where flow on a reverse edge

negates flow on

e Ef ={e:f(e)< c(e)} U {e :f(ereverse) > 0}/ corresponding forward edge
- Key property: f'is a flow in G, iff f+f'is a flow in G.

reverse edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

26

Augmenting Path

* Def. An augmenting path 1s a simple s~~¢ path 1n the residual network
Gy

* Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

* Key property. Let f be a flow and let P be an augmenting path in G,.
Then, after calling f' «— AUGMENT(f, ¢, P), the resulting /' 1s a flow

and val(/') =val(f) + bottleneck(G P).

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Augmenting Path

* Def. An augmenting path 1s a simple
s~2t path 1n the residual network Gf

 Def. The bottleneck capacity of an
augmenting path P 1s the minimum
residual capacity of any edge in P.

* Key property. Let f be a flow and let P
be an augmenting path in G, . Then,

AUGMENT(f, c, P)

0 < bottleneck capacity of augmenting path P.
FOREACH edge e € P :

IF(e €E) f(e) < f(e) + 0.

ELSE f(ereverse) «— f(ereverse) — 9§,

RETURN f.

after calling 7' «— AUGMENT(f, ¢, P),
the resulting /' 1s a flow and val(/') =
val(1) + bottleneck(Gy, P).

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

28

Ford—Fulkerson Algorithm

* Ford—Fulkerson augmenting path algorithm
 Start with f (e) = 0 for each edge e € E.
* Find an s~¢ path P in the residual network G,.

* Augment flow along path P.

i FORD-FULKERSON(G)
* Repeat until you get stuck.

FOREACH edge e €E E: f(e) < 0.
Gy < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)

f <= AUGMENT(/, c, P). \

Update Gy. augmenting path
RETURN f.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 29

Ford—Fulkerson Algorithm

Start with f (e) = 0 for each edge e € E.

Find an s~»¢ path P in the residual network Gy .
Augment flow along path P.

Repeat until you get stuck.

network G and flow f flow capacity
\ /
@ 0/4 &
N\ o)/ 2 oL 0/6 =
.
Q\ < 9 value of flow

/
@ 0/10 Q 0/9 Q 0/10 @ 0

% CS-3510: Design and Analysis of Algorithms | Summer 2022

30

Ford—Fulkerson Algorithm

network G and flow f

@ — ornc

residual network Gs

o — -

O

0/2

@

O

@

flow

N

0/4

0-/9

9

capacity

@

0/6

@

@

O

value of flow

/
0/10 @ 0

residual capacity

/-

‘0

10 (::>

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

31

Ford—Fulkerson Algorithm

network G and flow f

Q——Q

& | AP 0/2 155 0/6 =

@ 0/10 Q 0/9 O /10 @ 0+sLs

Residual capacity.
residual network Gs

4 Q _| Jle(e)i=If(e) ife€ B
/\ Cf (6) — {f(ereverse) if ereverse ¢ p

o 0—-—0

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Ford—Fulkerson Algorithm

network G and flow f
@ 0/4 @
o

Q
A 2|6,/ 2 ¢ 0/6 ol

2 10

@ 0/10 O 9/9 O 8/10 @ 8 +2=10

Residual capacity.
residual network Gs

4 O _[ele)-f(e) iteeE
/ ? ik {f TP T T I
S

@/10 L9—>O— —>@

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Ford—Fulkerson Algorithm

network G and flow f

¢ ——@

&
QS ®
K
2/2 ¢ 6 6/6 L~
\0\ : & £ ‘o
6 8

@ ©/10 O 2/9 O 10/10 @ loté=lec

Residual capacity.

Q 4 _| Jle(e)i=\f(e) ifeec B
T Cf (6) = {f(ereverse) if ereverse ¢ p

2 & 6 ‘0

FHEN

residual network Gs

\Q

¢<— —0——50 @

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 34

Ford—Fulkerson Algorithm

network G and flow f

@ /4 @)
&
Q ®
D 0-2/2 & 6/6 5

@ & /010 O 8/9 O 10/ 10 @ 6+ 2l=ls

fixes mistake from

second augmenting path J _
Residual capacity.

residual network Gs

4 — cle) — f(e) ifeeFE
1 cr(e) =

f(ereverse) if ereverse e E

C—— ! o——0

6 8
D CS‘351(} vesign and Anatysis of Algorithims | dSummer 2UZZ2 35
& J &

Ford—Fulkerson Algorithm

network G and flow f

Q@

Q Z &\9
A
0/2 ® 6/6 ~
9 9

@ 8/10 O 8/9 Q 10/ 10 @ I8+ 1l=ho9

Residual capacity.

_) cle) — f(e) ifeeF
K Cf (e) = {f(reverse) ‘f reverse
e if e e F

@@=

residual network Gs

@) CS-3510: Design and Anc 11y51s of Algorithms | Summer 2022 36

Ford—Fulkerson Algorithm

network G and flow f
@ .
0/2)/& 6/6 9_ value of

\Q
min cut \ ‘0 max flow

S o - e

capacity=10+9=19

@, ' .

is reachable from s 2 >

residual network Gs

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

37

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

wal(f) = S fle) = 3 £

e out of A e in to A

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

38

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

net flow across cut = 5 + 10 + 10 = 25
val(f) = Y, fle) = D>, f(e

e out of A einto A . 5/9 \

\°\ \
° 5/5 ‘ 5/8 .—10/107@ value of flow = 25

Q

\

s \
\Q

/5

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 39

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

net flow across cut = 10 +5 + 10 = 25
val(f) = Z fle—= Z f(e)

e out of A e in to A 5/9
/7 S
\0\\ 5/’5 JN/’o
A
(5/5—) 5/8 _10/10_>® value of flow = 25
7T
’p O
s \Q\
N A
10/16

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

net flow across cut = (10 +10 +5+10+0+0)-(5+5+0+0) = 25
val(f) =) fle) = Y. f(e)

e out of A e in to A _5/9_)
/ I \ edges from B to A
\Q $ ‘f/

A
0/4 74 ’p

<5/5 T 5/8 T—IO/IO*I value of flow = 25
o7
/0 AN
//J‘ 0/4 0/6 Ois \Q\
\+ \ /

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

net flow across cut = (10 +10 +5+10+0+0)-(5+5+0+0) = 25
val(f) =T)1 T fle) =) /e

-~

e out of A ein to A — 5O \‘
\ I\ \ edges from Bto A
\ s’

4 Na 1N\
5/5 5/8 10:10_),t value of flow = 25
A
\ ,' 4
/7 -y
0/,$ 0/4 47 % ~~~0-£-JE-.a\Q\\
v 4 * Y,
e"'"\i* \ A
y 4 10/16

% CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Flow value lemma. Let f be any flow and let (4, B) be any cut. Then,

the value of the flow f equals the net flow across the cut (4, B).

val(f) =

S fo - Y fle)

e out of A e in to A

* Proof.
val(f)

by flow conservation, all terms

—_—
except forv=sare0

=N (&) i(e)

e out of s e in to s

=z(am S uNAL f<e>)

vEA \e out of v e in to v
= DI LH& =D fE)],
e out of A einto A

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

43

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Weak duality. Let f be any flow and (4, B) be any cut.
Then, val(/) < cap(A4, B).

* Proof.
val(f) =D F)DL ()
e out of A e in to A
flow value/'S Z f(e)
lemma e out of A
< Z c(e)
e out of A
= cap(A,B) =

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

44

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Weak duality. Let f'be any flow and (4, B) be any cut.
Then, val(/) < cap(A4, B).

SIS ﬂ\ O\O\

ngs/s _)ﬁ)_ 7/8 —>ﬁ>~9/lo_>@ < 5 =3) >() >(7)
N s |

value of flow = 27 < capacity of cut = 30

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Certificate of optimality

* Corollary. Let fbe a flow and let (4, B) be any cut.
If val(/) = cap(A, B), then f1s a max flow and (4, B) 1s a min cut.

* Proof. weak duality
* For any flow f": val(f') < cap(A, B) = val(f).
* For any cut (4', B"): cap(A', B") > val(f) = cap(A4, B). *
weak duality

v
L 4

Max-Flow Min-Cut Theorem

* Relationship between flows and cuts

* Certificate of optimality

* Corollary. Let fbe a flow and let (4, B) be any cut.
If val(f) = cap(A, B), then f1s a max flow and (4, B) 1s a min cut.

value of flow = 28 = capacity of cut = 28

% CS-3510: Design and Analysis of Algorithms | Summer 2022

47

Max-Flow Min-Cut Theorem

e Max-flow min-cut theorem

Value of a max flow = capacity of a min cut
strong duality

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

48

Max-Flow Min-Cut Theorem

* Max-flow min-cut theorem: Value of a max flow = capacity of a min cut

* Augmenting path theorem: A flow f1s a max flow 1ff no augmenting paths.

* Proof : The following three conditions are equivalent for any flow f:
1. There exists a cut (4, B) such that cap(4, B) = val(f).
2. fi1s amax flow.
3. There 1s no augmenting path with respect to f.

v
L 4

Max-Flow Min-Cut Theorem

* Max-flow min-cut theorem: Value of a max flow = capacity of a min cut

* Augmenting path theorem: A flow f1s a max flow 1ff no augmenting paths.

* Proof : The following three conditions are equivalent for any flow f:
1. There exists a cut (4, B) such that cap(4, B) = val(f).
2. fi1s amax flow.

3. There 1s no augmenting path with respect to /. if Ford—Fulkerson terminates,
then f 1s max flow

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Max-Flow Min-Cut Theorem

* Max-flow min-cut theorem: Value of a max flow = capacity of a min cut

* Augmenting path theorem: A flow f1s a max flow 1ff no augmenting paths.

* Proof : The following three conditions are equivalent for any flow f:
1. There exists a cut (4, B) such that cap(4, B) = val(f).
2. fi1s amax flow.

3. There 1s no augmenting path with respect to /. if Ford—Fulkerson terminates,
then f 1s max flow

¢ 152
* This 1s the weak duality corollary.

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Max-Flow Min-Cut Theorem

* Max-flow min-cut theorem: Value of a max flow = capacity of a min cut

* Augmenting path theorem: A flow f1s a max flow 1ff no augmenting paths.

* Proof : The following three conditions are equivalent for any flow f:
1. There exists a cut (4, B) such that cap(4, B) = val(f).
2. fi1s amax flow.
3. There 1s no augmenting path with respect to f.

* 2=3 We prove contrapositive: 73 = — 2.
* Suppose that there 1s an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f1s not a max flow.

Y

Max-Flow Min-Cut Theorem

* Max-flow min-cut theorem: Value of a max flow = capacity of a min cut

* Augmenting path theorem: A flow f1s a max flow 1ff no augmenting paths.

* Proof : The following three conditions are equivalent for any flow f:
1. There exists a cut (4, B) such that cap(4, B) = val(f).
2. fi1s amax flow.
3. There 1s no augmenting path with respect to f.

e 31

* Let fbe a flow with no augmenting paths.

* Let A = set of nodes reachable from s in residual network Gy
* By definition of 4: s € A4.

* By definition of flow f: ¢ & A.

Y

Max-Flow Min-Cut Theorem

* 3=1
* Let f be a flow with no augmenting paths.
* Let 4 = set of nodes reachable from s in residual network G. ¢d9¢¢ ;ﬁ‘;t’;)a‘\’/":}‘(:)i i
* By definition of 4: s € A. original flow network G
* By definition of flow f: t & A. A /

flow value

lemma == Z c(e) -0

e out of A

= cap(A,B) = /

: . , edge eizl (v,w)withvEA, wEB
» CS-3510: Design and Analysis of Algorithms | Summer 2022 mtljst have f(¢) = c(e) 54
| |

Max-Flow Min-Cut Theorem

* Computing a minimum cut from a maximum flow

* Theorem. Given any max flow f, can compute a min cut (4, B) in
O(|E]) time.

e Proof. Let A = set of nodes reachable from s 1n residual network Gf. .

argument from previous slide implies that
capacity of (A, B) = value of flow f

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

55

Max-Flow Min-Cut Theorem

* Computing a minimum cut from a maximum flow

* Theorem. Given any max flow f, can compute a min cut (4, B) in O(|E]) time.

 Proof. Let A = set of nodes reachable from s 1n residual network Gf

T
N

NN

3 1

N i/

/ //m /s
P

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

56

Graph

* Graph definition and representation * Graph problems/algorithms
* Adjacency matrix e Minimum spanning tree (MST)
* Adjacency list » Kruskal (greedy)

* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
* Shortest path (unweighted graphs) » Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (Ievel-order)
* Connected components * Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
« Topological sorting e Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
« Connected components

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 57

References

* The lecture slides are mainly based on the suggested textbooks and the
corresponding published lecture notes:

» Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. (Main reference)

e KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

* CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,

Third Edition, MIT Press, 2009.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

58

http://www.cs3510.com/policies/

