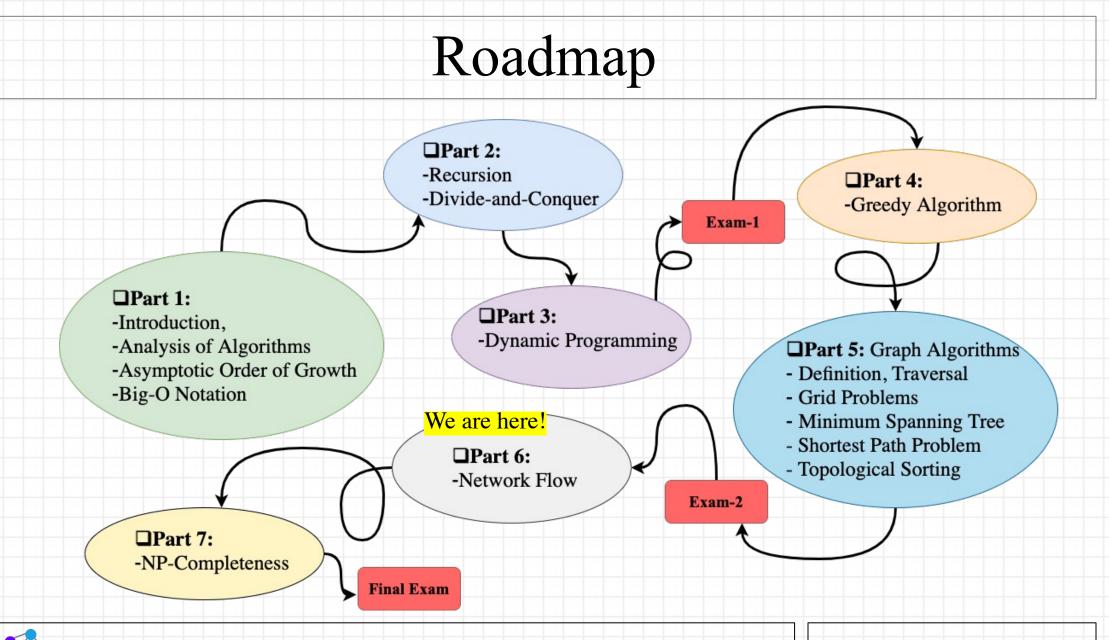
CS-3510: Design and Analysis of Algorithms

Flow Network

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022



Graph

- Graph definition and representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal
 - Breadth first search (BFS)
 - Shortest path (<u>unweighted</u> graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
 - Depth first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

- Graph problems/algorithms
 - Minimum spanning tree (MST)
 - Kruskal (greedy)
 - Prim (greedy)
 - Shortest path (directed weighted graphs)
 - Dijkstra (greedy)
 - Bellman-Ford (dynamic programming)
 - Floyd-Warshall (dynamic programming)
 - Flow network
 - Max-flow min-cut theorem
 - Ford-Fulkerson algorithm

Flow Network

A flow network is a tuple G = (V, E, s, t, c).

- Digraph (V, E) with source $s \in V$ and sink $t \in V$.
- Capacity $c(e) \ge 0$ for each $e \in E$.

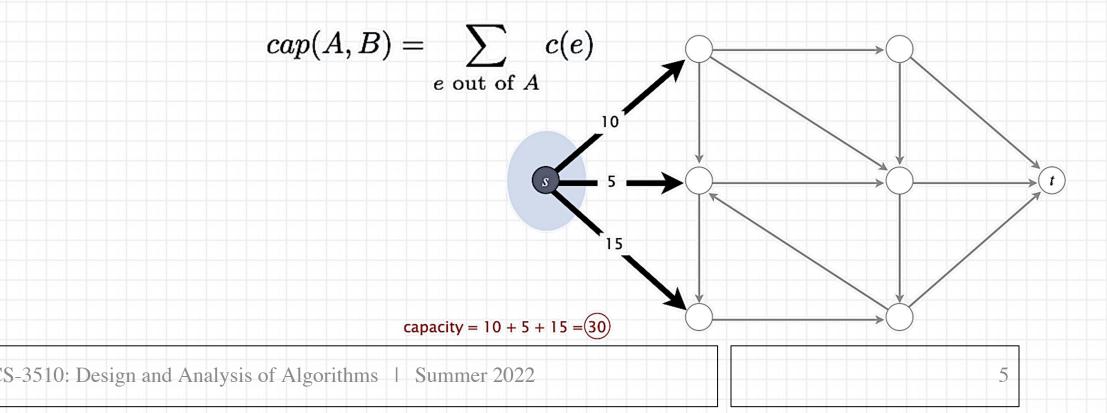
assume all nodes are reachable from s

4

Intuition. Material flowing through a transportation network; material originates at source and is sent to sink. y = 0y =

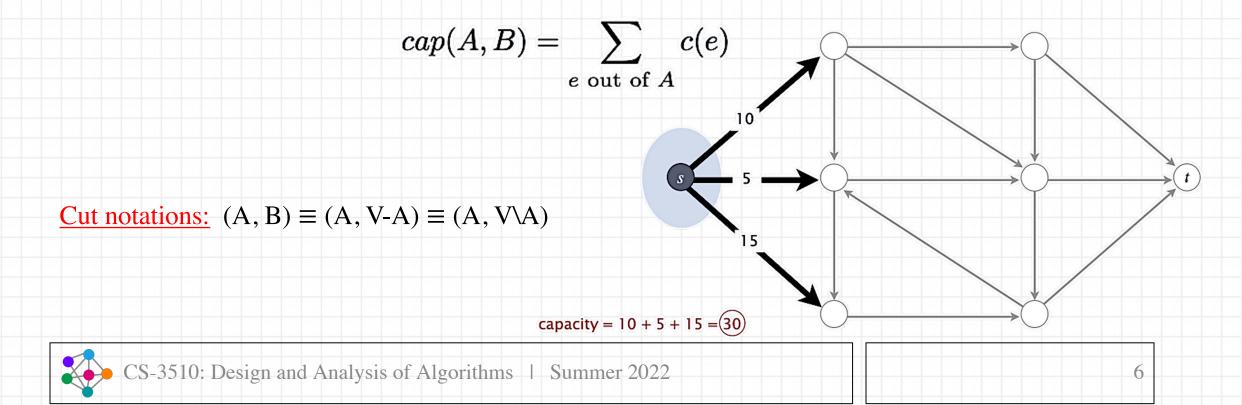
Def. An *st*-cut (cut) is a partition (*A*, *B*) of the nodes with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



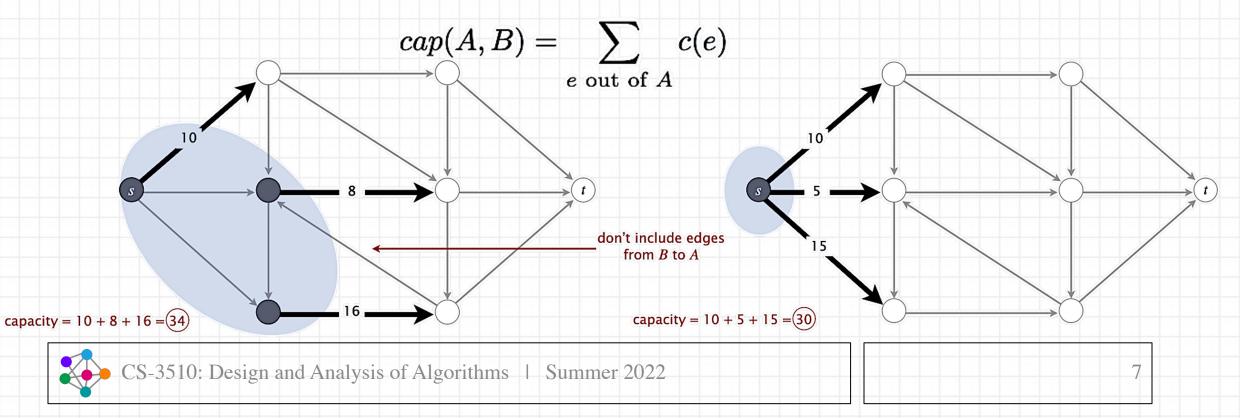
Def. An *st*-cut (cut) is a partition (*A*, *B*) of the nodes with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



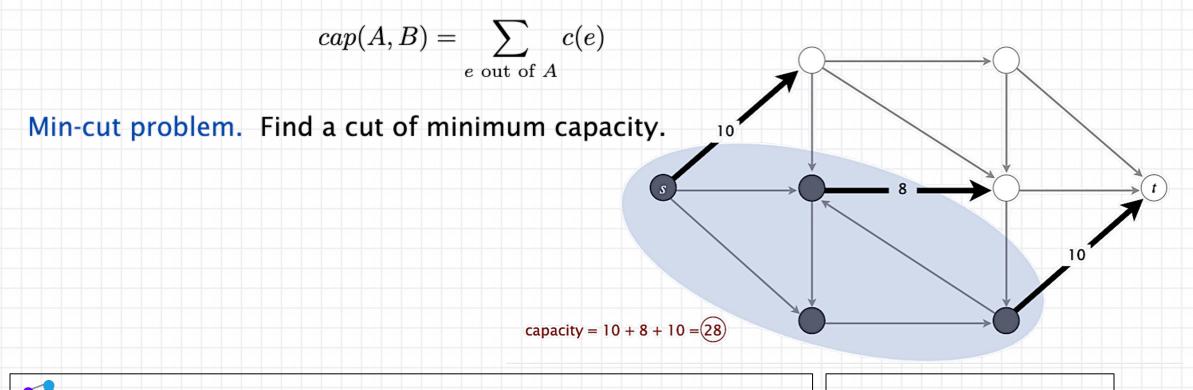
Def. An *st*-cut (cut) is a partition (*A*, *B*) of the nodes with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



Def. An *st*-cut (cut) is a partition (A, B) of the nodes with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



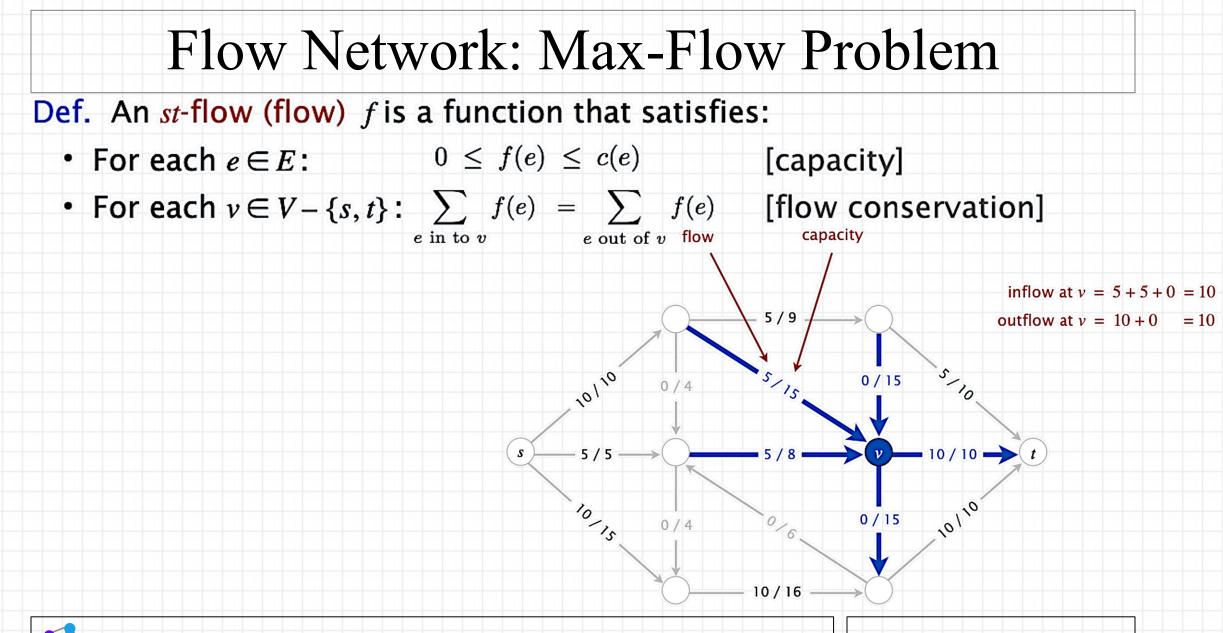
8

Def. An *st*-flow (flow) *f* is a function that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

• For each
$$v \in V - \{s, t\}$$
: $\sum f(e) = \sum f(e)$ [flow conservation]

 $e ext{ in to } v ext{ e out of } v$



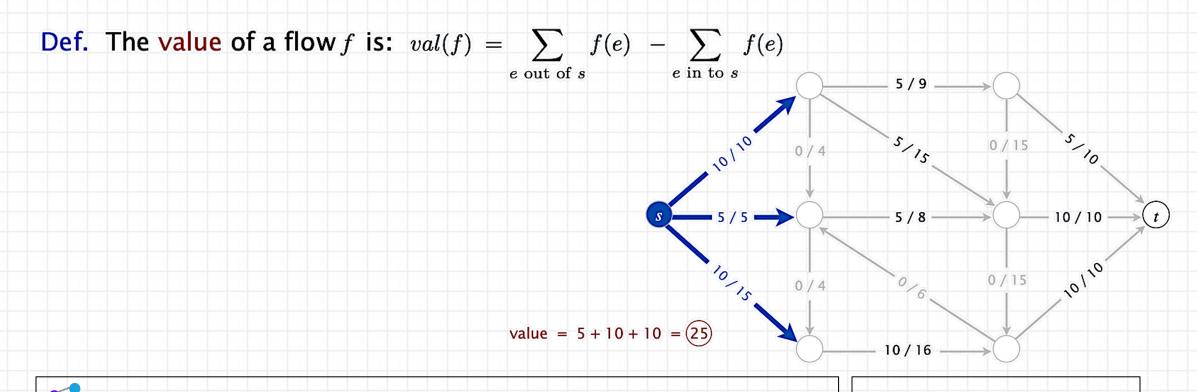
Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow f is:
$$val(f) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ in to } s} f(e)$$

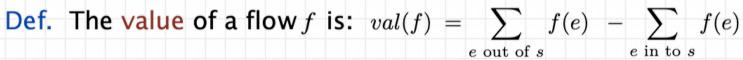
Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

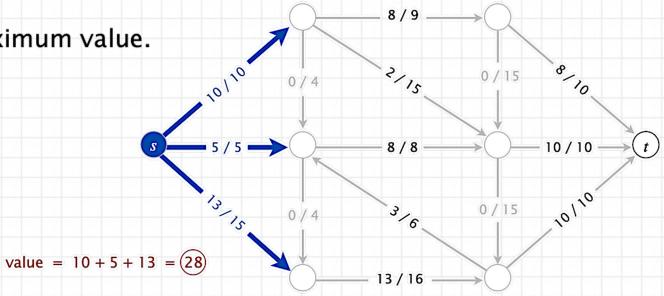


Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]



Max-flow problem. Find a flow of maximum value.



• Toward a max-flow algorithm

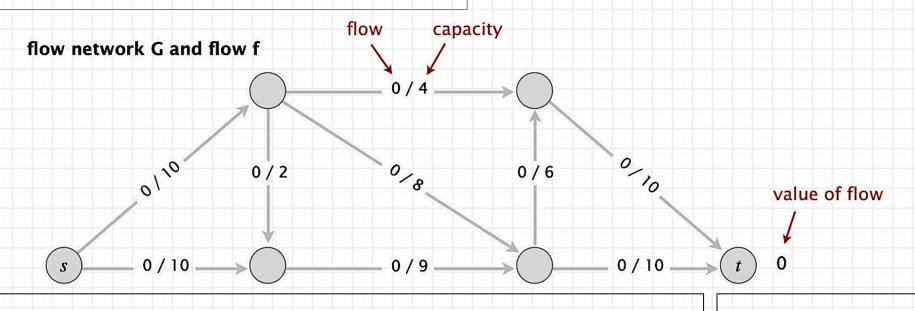
Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

• Toward a max-flow algorithm

Greedy algorithm.

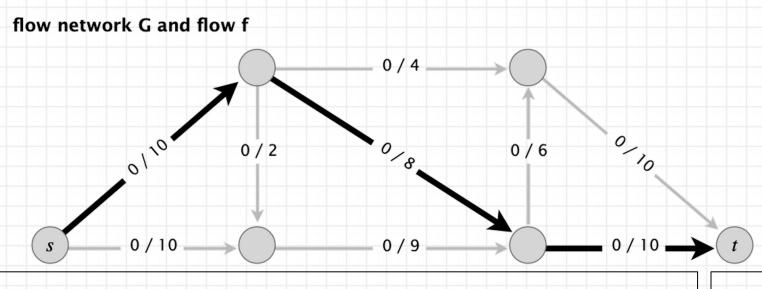
- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s* \rightarrow *t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



• Toward a max-flow algorithm

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \sim t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



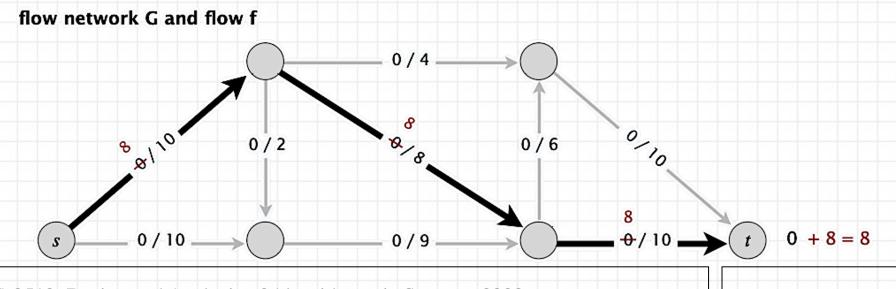
CS-3510: Design and Analysis of Algorithms | Summer 2022

0

• Toward a max-flow algorithm

Greedy algorithm.

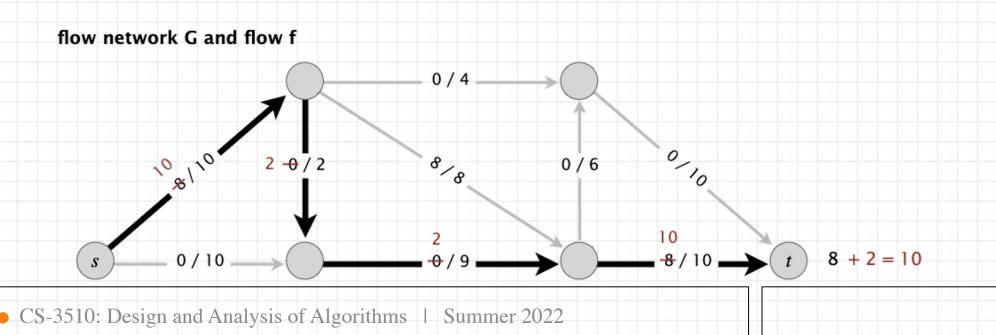
- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s* \prec *t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



• Toward a max-flow algorithm

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s* \rightarrow *t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

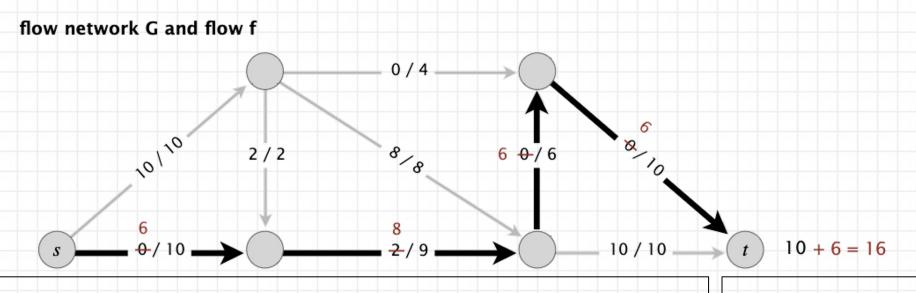


18

• Toward a max-flow algorithm

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s* \rightarrow *t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

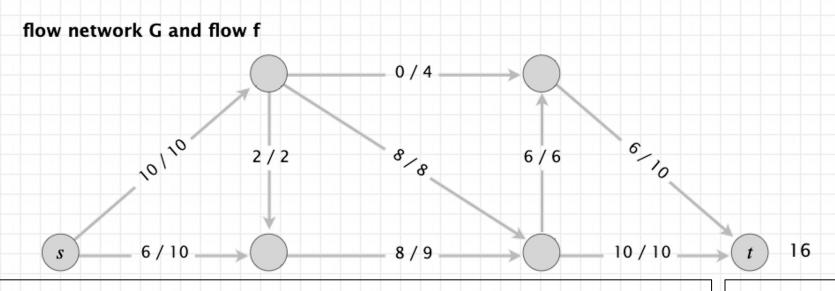


• Toward a max-flow algorithm

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

ending flow value = 16

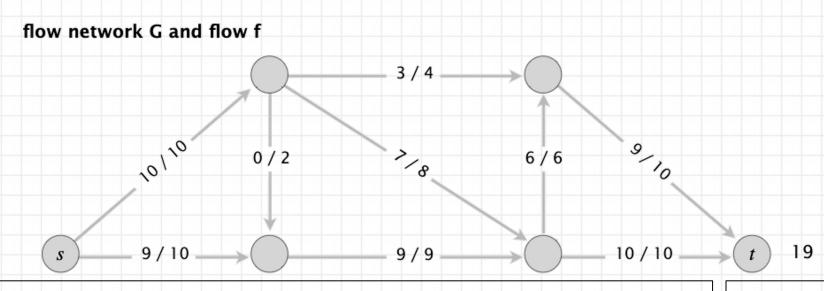


• Toward a max-flow algorithm

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

but max-flow value = 19



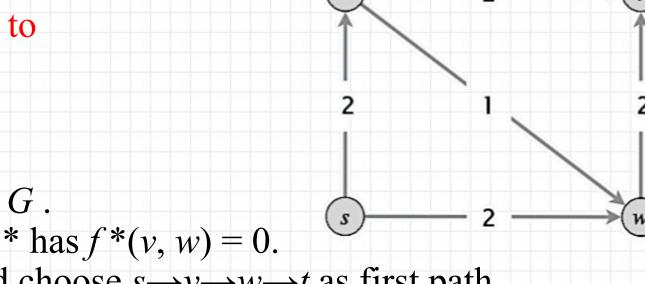
- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it.

- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it.

flow network G

• Ex. Consider flow network G. The unique max flow f^* has $f^*(v, w) = 0$. Greedy algorithm could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first path.

- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it. flow network G
- <u>Bottom line.</u> Need some mechanism to "undo" a bad decision.



Consider flow network *G*. The unique max flow f^* has $f^*(v, w) = 0$. Greedy algorithm could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first path.

Residual Network

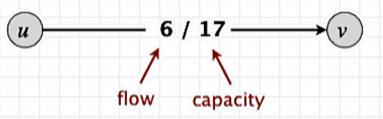
Original edge. $e = (u, v) \in E$.

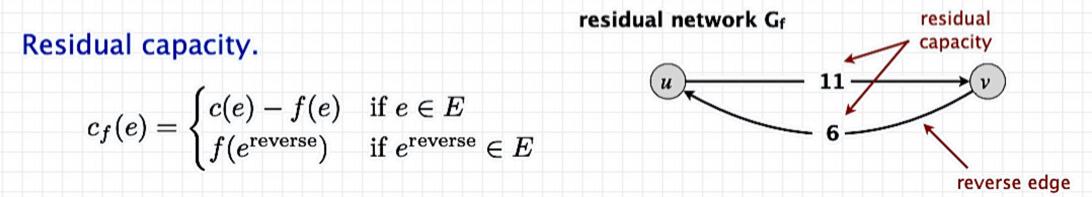
- Flow f(e).
- Capacity c(e).

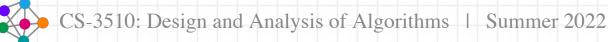
Reverse edge. $e^{\text{reverse}} = (v, u)$.

"Undo" flow sent.

original flow network G







Residual Network

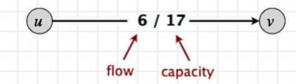
Original edge. $e = (u, v) \in E$.

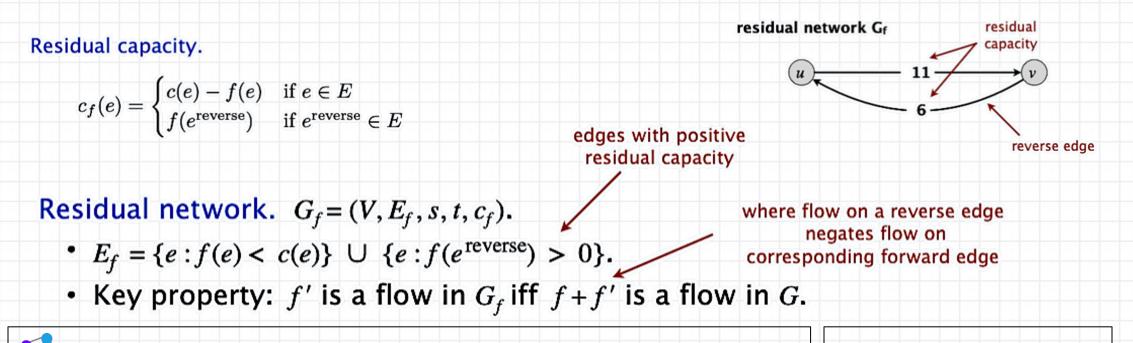
- Flow *f*(*e*).
- Capacity c(e).

Reverse edge. $e^{\text{reverse}} = (v, u)$.

"Undo" flow sent.

original flow network G





Augmenting Path

- Def. An augmenting path is a simple $s \sim t$ path in the residual network G_f
- Def. The bottleneck capacity of an augmenting path *P* is the minimum residual capacity of any edge in *P*.
- Key property. Let f be a flow and let P be an augmenting path in G_f . Then, after calling $f' \leftarrow \text{AUGMENT}(f, c, P)$, the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

Augmenting Path

- Def. An augmenting path is a simple *s*∿*t* path in the residual network *Gf*
- Def. The bottleneck capacity of an augmenting path *P* is the minimum residual capacity of any edge in *P*.
- Key property. Let f be a flow and let Pbe an augmenting path in G_f . Then, after calling $f' \leftarrow \text{AUGMENT}(f, c, P)$, the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

AUGMENT(f, c, P)

 $\delta \leftarrow$ bottleneck capacity of augmenting path *P*. FOREACH edge $e \in P$:

IF
$$(e \in E) f(e) \leftarrow f(e) + \delta$$
.

ELSE
$$f(e^{\text{reverse}}) \leftarrow f(e^{\text{reverse}}) - \delta$$
.

RETURN f.

- Ford–Fulkerson augmenting path algorithm
 - Start with f(e) = 0 for each edge $e \in E$.
 - Find an $s \sim t$ path P in the residual network G_f .
 - Augment flow along path P.
 - Repeat until you get stuck.

FORD-FULKERSON(G)

FOREACH edge $e \in E$: $f(e) \leftarrow 0$.

 $G_f \leftarrow$ residual network of G with respect to flow f.

WHILE (there exists an s \neg t path *P* in *G*_{*f*})

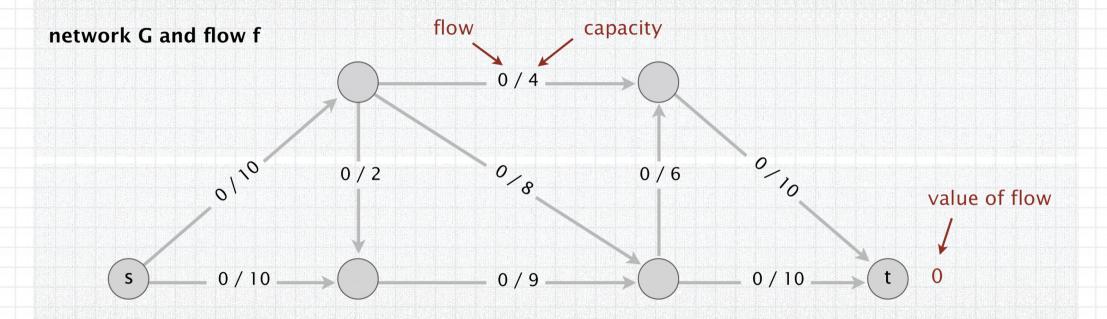
 $f \leftarrow \text{AUGMENT}(f, c, P).$

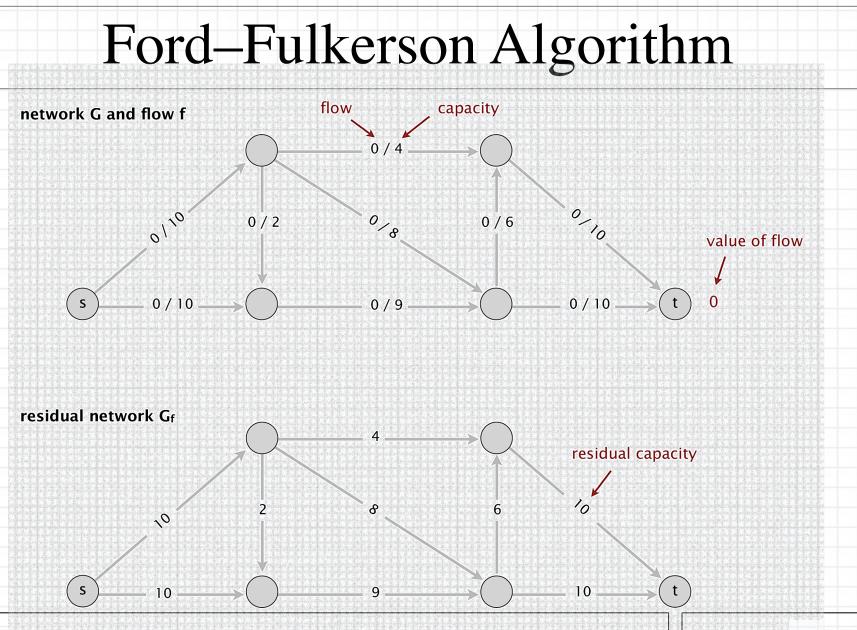
Update G_f .

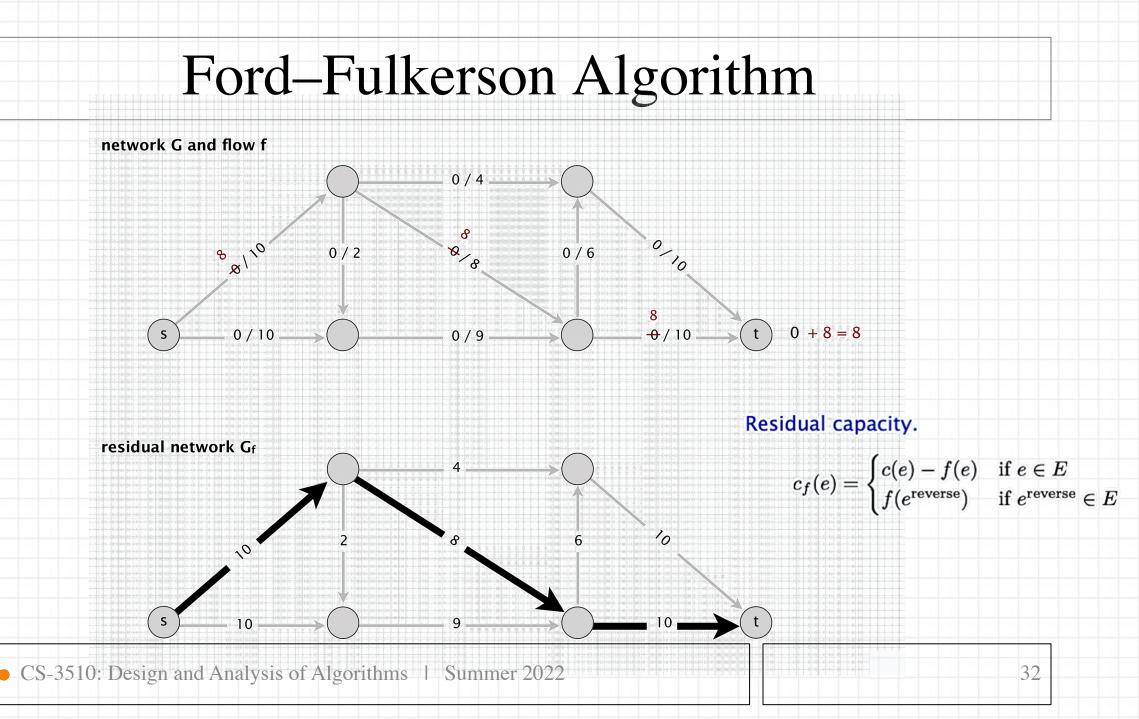
augmenting path

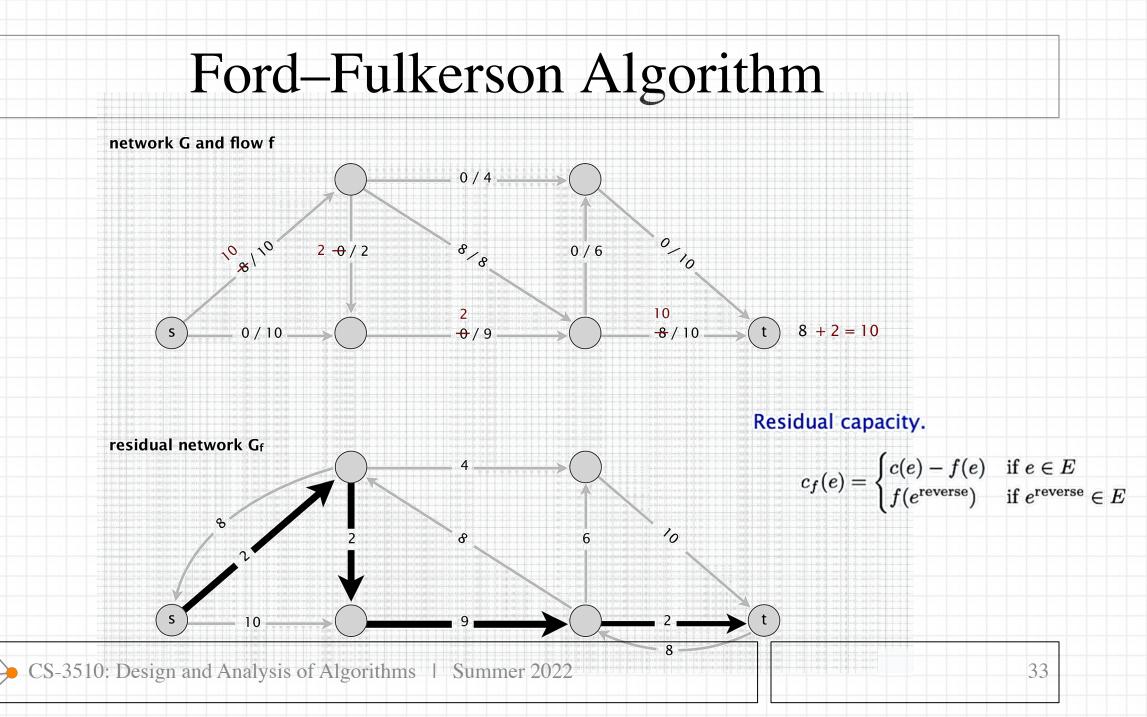
RETURN f.

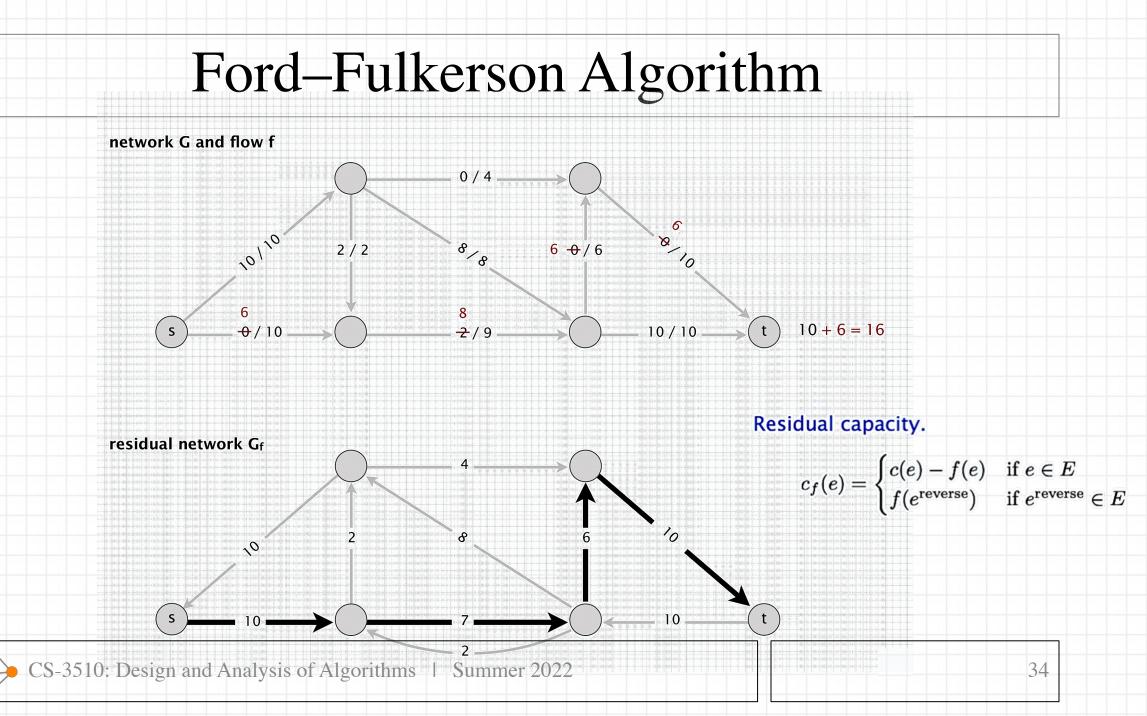
- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \sim t$ path P in the residual network G_f .
- Augment flow along path *P*.
- Repeat until you get stuck.

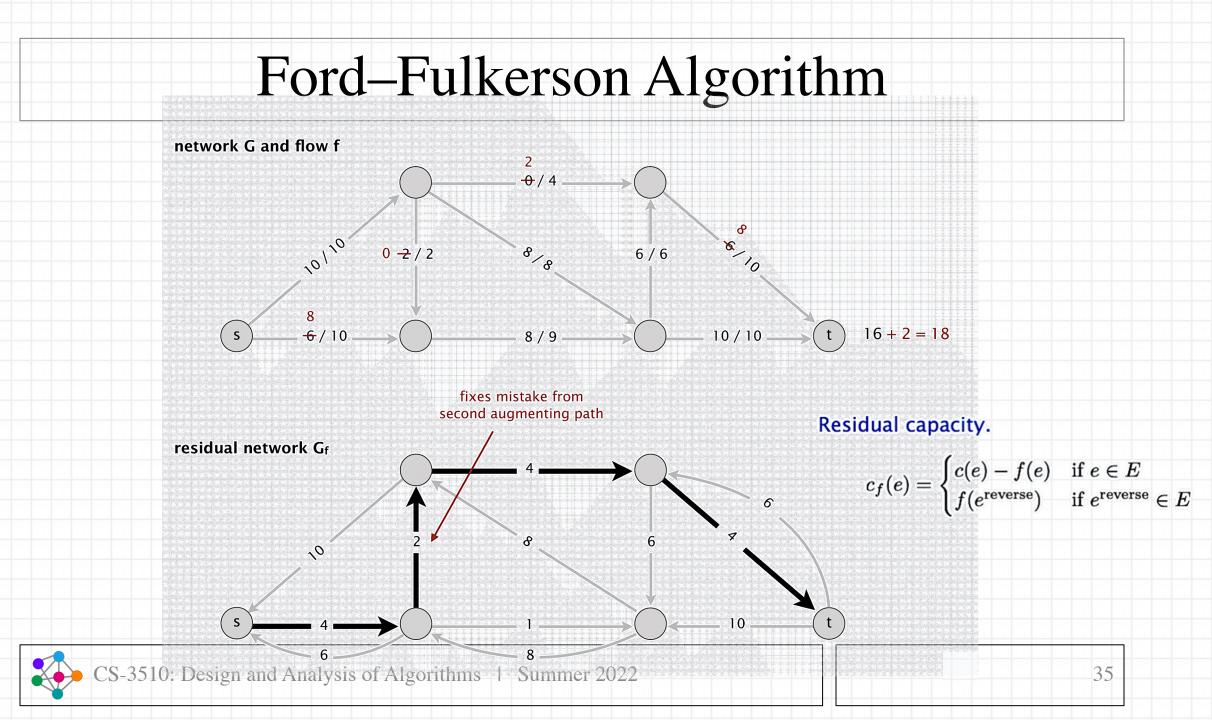


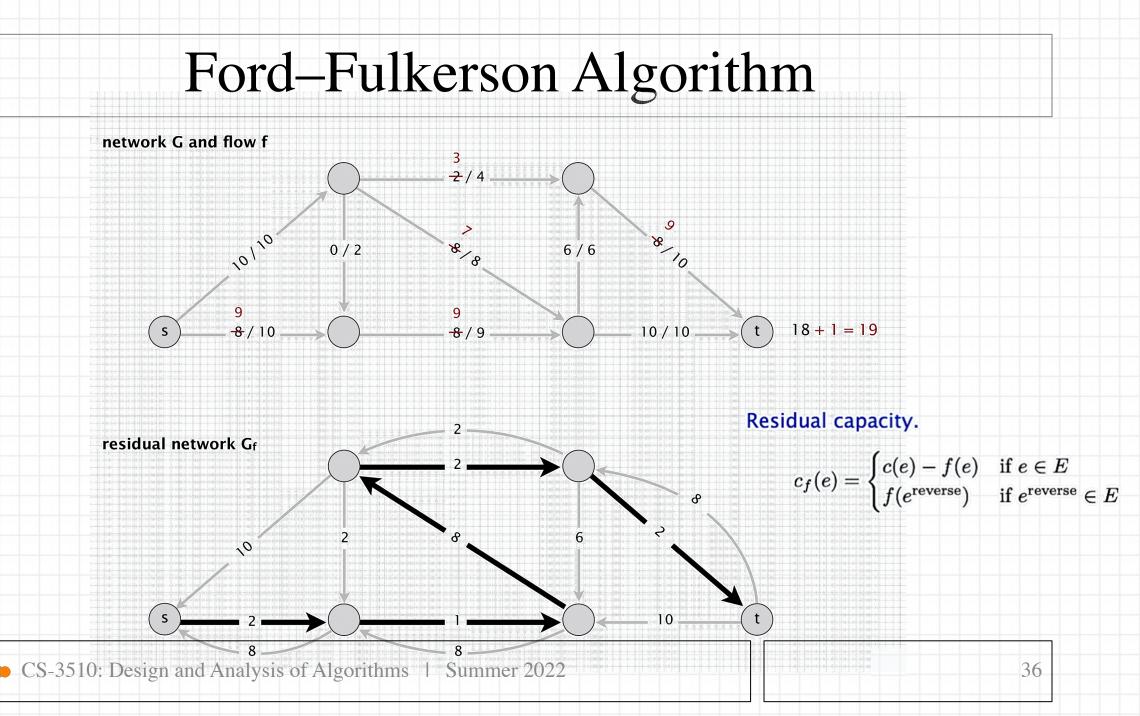


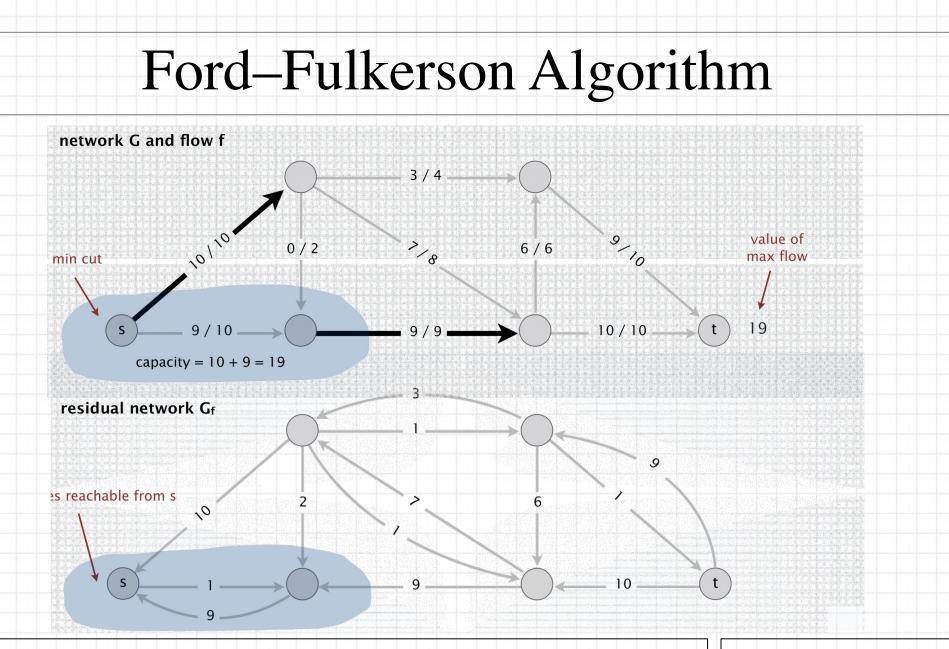








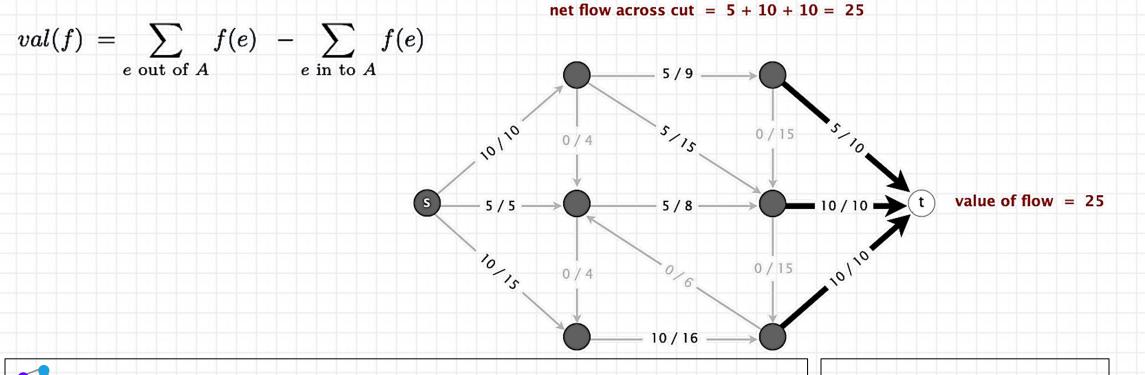




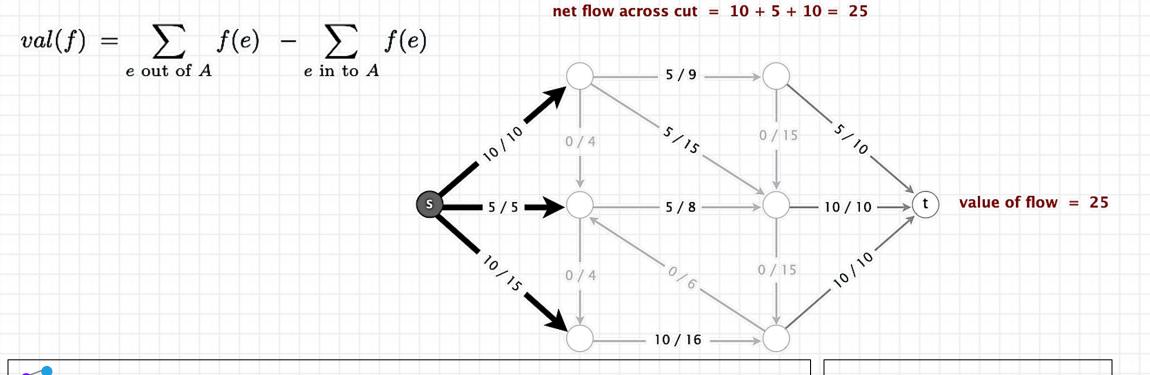
- Relationship between flows and cuts
- <u>Flow value lemma</u>. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

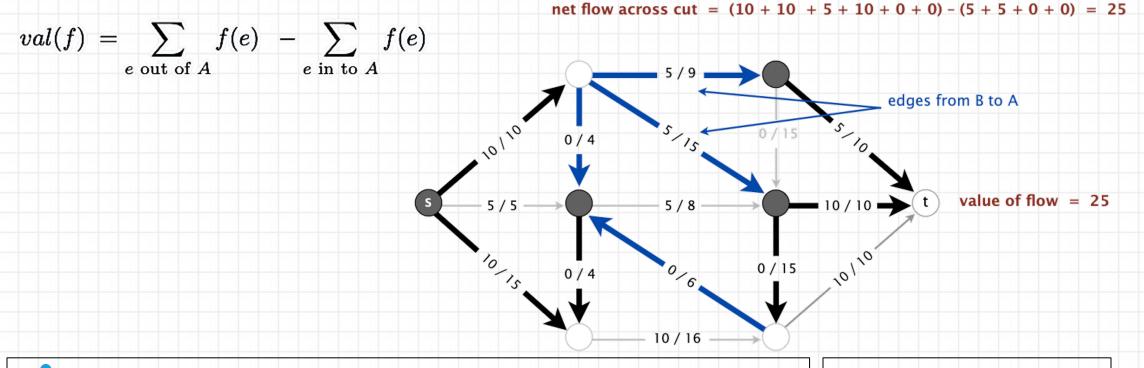
- Relationship between flows and cuts
- Flow value lemma. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).



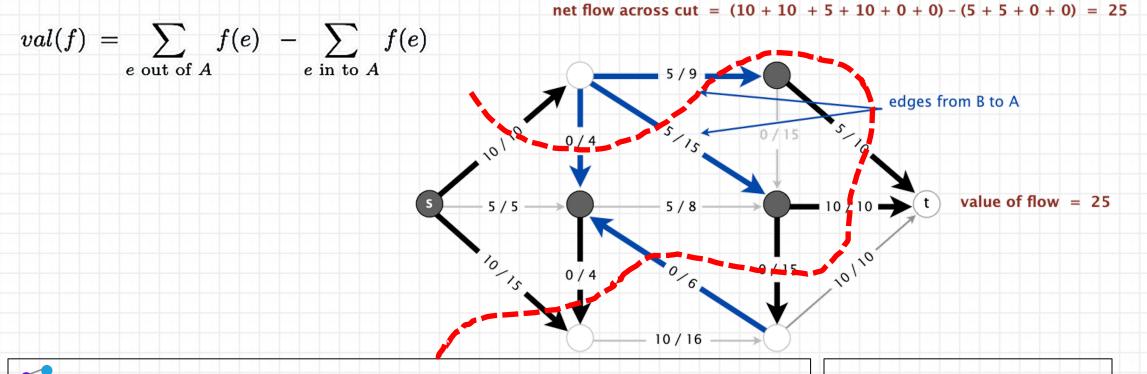
- Relationship between flows and cuts
- Flow value lemma. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).



- Relationship between flows and cuts
- Flow value lemma. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).



- Relationship between flows and cuts
- Flow value lemma. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).



- Relationship between flows and cuts
- Flow value lemma. Let *f* be any flow and let (*A*, *B*) be any cut. Then, the value of the flow *f* equals the net flow across the cut (*A*, *B*).

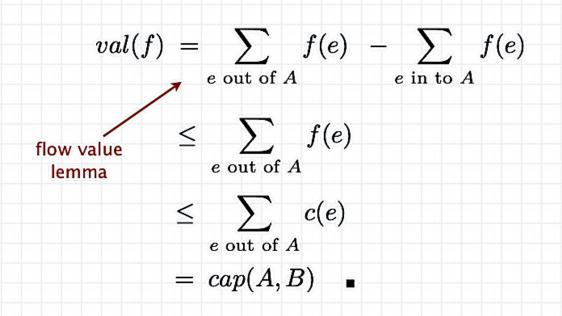
Proof.

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

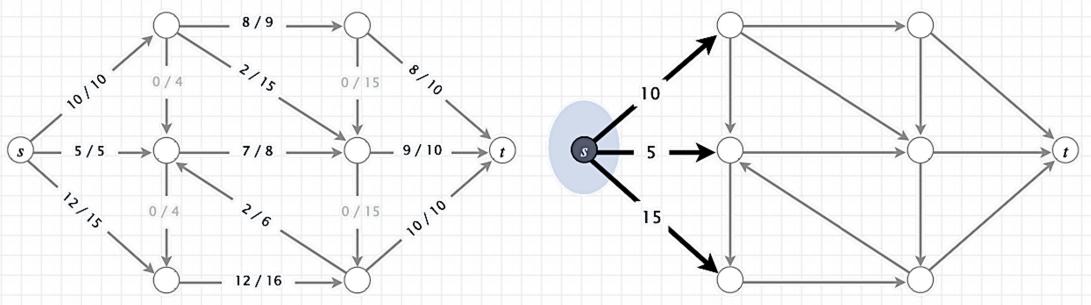
$$val(f) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ in to } s} f(e)$$
by flow conservation, all terms
$$\Rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } v} f(e)$$

- Relationship between flows and cuts
- Weak duality. Let *f* be any flow and (A, B) be any cut. Then, $val(f) \le cap(A, B)$.
- Proof.



- Relationship between flows and cuts
- Weak duality. Let *f* be any flow and (A, B) be any cut. Then, $val(f) \le cap(A, B)$.



value of flow = 27 \leq capacity of cut = 30

- Relationship between flows and cuts
- Certificate of optimality
- Corollary. Let f be a flow and let (A, B) be any cut. If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

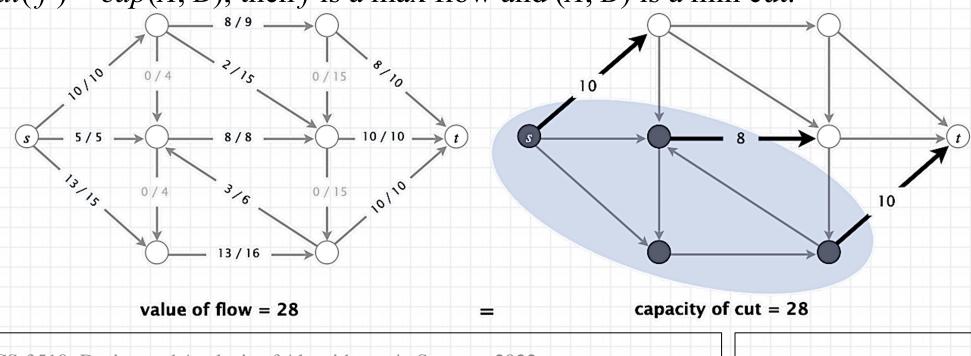
• Proof.

weak duality

- For any flow f': $val(f') \le cap(A, B) = val(f)$.
- For any cut (A', B'): $cap(A', B') \ge val(f) = cap(A, B)$.

weak duality

- Relationship between flows and cuts
- Certificate of optimality
- Corollary. Let f be a flow and let (A, B) be any cut. If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.



• Max-flow min-cut theorem

Value of a max flow = capacity of a min cut

strong duality

- <u>Max-flow min-cut theorem</u>: Value of a max flow = capacity of a min cut
- <u>Augmenting path theorem:</u> A flow *f* is a max flow iff no augmenting paths.
- Proof : The following three conditions are equivalent for any flow f:
 - 1. There exists a cut (A, B) such that cap(A, B) = val(f).
 - 2. f is a max flow.
 - 3. There is no augmenting path with respect to f.

- <u>Max-flow min-cut theorem</u>: Value of a max flow = capacity of a min cut
- <u>Augmenting path theorem:</u> A flow *f* is a max flow iff no augmenting paths.
- Proof : The following three conditions are equivalent for any flow f:
 - 1. There exists a cut (A, B) such that cap(A, B) = val(f).
 - 2. f is a max flow.
 - 3. There is no augmenting path with respect to f. if Ford–Fulkerson terminates,

then f is max flow

- <u>Max-flow min-cut theorem</u>: Value of a max flow = capacity of a min cut
- <u>Augmenting path theorem:</u> A flow *f* is a max flow iff no augmenting paths.
- Proof : The following three conditions are equivalent for any flow f:
 - 1. There exists a cut (A, B) such that cap(A, B) = val(f).
 - 2. f is a max flow.
 - 3. There is no augmenting path with respect to f. if Ford–Fulkerson terminates, then f is max flow

• <mark>1⇒2</mark>

• This is the weak duality corollary.

- <u>Max-flow min-cut theorem</u>: Value of a max flow = capacity of a min cut
- <u>Augmenting path theorem:</u> A flow *f* is a max flow iff no augmenting paths.
- Proof : The following three conditions are equivalent for any flow f:
 - 1. There exists a cut (A, B) such that cap(A, B) = val(f).
 - 2. f is a max flow.
 - 3. There is no augmenting path with respect to f.
- $2 \Rightarrow 3$ We prove contrapositive: $\neg 3 \Rightarrow \neg 2$.
 - Suppose that there is an augmenting path with respect to f.
 - Can improve flow *f* by sending flow along this path.
 - Thus, *f* is not a max flow.

- <u>Max-flow min-cut theorem</u>: Value of a max flow = capacity of a min cut
- <u>Augmenting path theorem:</u> A flow *f* is a max flow iff no augmenting paths.
- Proof : The following three conditions are equivalent for any flow f:
 - 1. There exists a cut (A, B) such that cap(A, B) = val(f).
 - 2. f is a max flow.
 - 3. There is no augmenting path with respect to f.

• <mark>3⇒1</mark>

- Let *f* be a flow with no augmenting paths.
- Let A = set of nodes reachable from s in residual network G_{f} .
- By definition of $A: s \in A$.
- By definition of flow $f: t \notin A$.

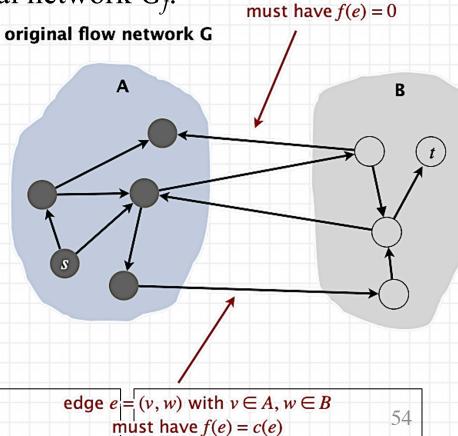
• <mark>3⇒1</mark>

- Let *f* be a flow with no augmenting paths.
- Let A = set of nodes reachable from s in residual network G_{f} . $edge e = (v, w) \text{ with } v \in B, w \in A$ must have f(e) = 0
- By definition of $A: s \in A$.
- By definition of flow $f: t \notin A$.

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

low value
lemma =
$$\sum_{e \text{ out of } A} c(e) - 0$$

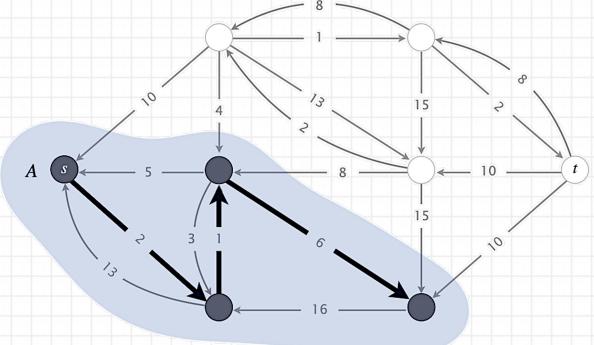
=
$$cap(A, B)$$



- Computing a minimum cut from a maximum flow
- Theorem. Given any max flow *f*, can compute a min cut (*A*, *B*) in O(|E|) time.
- Proof. Let A = set of nodes reachable from s in residual network G_f .

argument from previous slide implies that capacity of (A, B) = value of flow f

- Computing a minimum cut from a maximum flow
- Theorem. Given any max flow f, can compute a min cut (A, B) in O(|E|) time.
- Proof. Let A = set of nodes reachable from s in residual network G_f .



Graph

- Graph definition and representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal
 - Breadth first search (BFS)
 - Shortest path (<u>unweighted</u> graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
 - Depth first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

- Graph problems/algorithms
 - Minimum spanning tree (MST)
 - Kruskal (greedy)
 - Prim (greedy)
 - Shortest path (directed weighted graphs)
 - Dijkstra (greedy)
 - Bellman-Ford (dynamic programming)
 - Floyd-Warshall (dynamic programming)
 - Flow network
 - Max-flow min-cut theorem
 - Ford-Fulkerson algorithm

References

- The lecture slides are mainly based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - <u>Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. (Main reference)</u>
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.

