
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Graph Algorithms:
Minimum Spanning Tree

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

8

3

7

0

4

1

6 5

2

1

3

3

10 12

2

7

2

Spanning tree:

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

8

3

7

0

4

1

6 5

2

1

3

3

10 12

2

7

2

Total weight = 1 + 3 + 3 + 10 + 12 + 2 + 7 + 2 = 40

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

8

3

7

0

4

1

6 5

2

1

3

10
6

24
5

2

Another spanning tree:

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

8

3

7

0

4

1

6 5

2

1

3

10
6

24
5

2

Total weight = 1 + 10 + 3 + 6 + 2 + 5 + 4 + 2 = 33

Minimum Spanning Tree (MST)
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Minimum Spanning Tree (MST)
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree
• Spanning tree T for G such that the sum is minimized
• Approach: “Greedy choice”
• Algorithms:
• Kruskal
• Prim

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method,

which grows the minimum spanning tree one edge at a time.
• The generic method manages a set of edges A, maintaining the

following loop invariant:
• Prior to each iteration, A is a subset of some minimum spanning tree.

• At each step, we determine an edge 𝑢, 𝑣 that we can add to A
without violating this invariant 𝐴 ∪ 𝑢, 𝑣 is also a subset of an MST
• An edge is safe edge if adding it to A will not violate the invariant.

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method,

which grows the minimum spanning tree one edge at a time.

• Tricky part? Finding a safe edge at each iteration!

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• An edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 − 𝑆 if one of this endpoints is in 𝑆,

and the other in 𝑉 − 𝑆

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• An edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 − 𝑆 if one of this endpoints is in 𝑆,

and the other in 𝑉 − 𝑆

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• A cut respects a set A of edges if no edge in A crosses the cut.

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• An edge is a light edge crossing a cut if its weight is the minimum of any edge

crossing the cut.
• Note that there can be more than one light edge crossing a cut in the case of ties.

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• An edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 − 𝑆 if one of this endpoints is in 𝑆, and

the other in 𝑉 − 𝑆
• A cut respects a set A of edges if no edge in A crosses the cut.
• An edge is a light edge crossing a cut if its weight is the minimum of any edge

crossing the cut.

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Generic-MST
• Theorem:
Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for 𝐺, let 𝑆, 𝑉 − 𝑆 be any cut of
𝐺 that respects 𝐴, and let (𝑢, 𝑣) be a light edge crossing this cut. Then
edge (𝑢, 𝑣) is safe for 𝐴.

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Generic-MST
• Theorem:
Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for 𝐺, let 𝑆, 𝑉 − 𝑆 be any cut of
𝐺 that respects 𝐴, and let (𝑢, 𝑣) be a light edge crossing this cut. Then
edge (𝑢, 𝑣) is safe for 𝐴.

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Generic-MST
• Notes
• The set A is always acyclic.
• At any point G" = (𝑉, 𝐴) is a forest
• At first when 𝐴 = 𝜙, we have |V| trees

in the forest G", each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4) runs for |V|-1 times to find the edges required to form

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Generic-MST
• Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for 𝐺,
• [Theorem:] let 𝑆, 𝑉 − 𝑆 be any cut of 𝐺 that respects 𝐴, and let
(𝑢, 𝑣) be a light edge crossing this cut. Then edge (𝑢, 𝑣) is safe for 𝐴.
• [Corollary:] let 𝐶 = (𝑉! , 𝐸!) be a connected component (tree) in the

forest G" = (𝑉, 𝐴). If (𝑢, 𝑣) is a light edge connecting 𝐶 to some other
component in G", Then edge (𝑢, 𝑣) is safe for 𝐴.
• Pf. Cut 𝑉# , 𝑉 − 𝑉# respects 𝐴, and (𝑢, 𝑣) is a light edge for this cut à safe

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Cannot add this one
(not two distinct
components!)

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

8

3

7

0

4

1

6 5

2

1

3

3
3

24
5

2

MST Weight = 1 + 2 + 2 + 3 + 3 + 3 + 4 + 5 = 23

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

Creating one disjoint-set
per each graph vertex

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

To find the light weight at each step

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

For the current min-weight (light weight) edge

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Greedy choice

Running time?

Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|E| log|𝐸|)
• For loop (lines 5-8)

• Find-Set and Union O(|E|)
• O(𝑉 + 𝐸 𝛼(𝑉)) (along with the Make-Set operations)
• Assume G is connected: |E| ≥ |V|−1
• O 𝑉 + 𝐸 𝛼 𝑉 → O |𝐸|𝛼 𝑉

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Running time?

𝛼 𝑁 is the Inverse
Ackermann function
related to the performance
of the optimized disjoint-
set data structure.

Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|𝐸| log|𝐸|)
• For loop (lines 5-8)

• O 𝑉 + 𝐸 𝛼 𝑉 → O |𝐸|𝛼 𝑉
• 𝛼 𝑉 = 𝑂 log 𝑉 = 𝑂 log 𝐸

• Also, observing 𝐸 < 𝑉 &

• O(|𝐸| log|𝑉|)

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Running time?

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

• Very similar to Kruskal’s algorithm
• Greedy à At each step, it adds to the tree an edge that contributes the minimum amount

possible to the tree’s weight.
• Growing MST

• Main difference
• The edges in the growing set A always form a single tree, i.e., instead of starting from a forest

of single-node trees, we start with an arbitrary node and grow the MST from that node by
making greedy decisions, one at a time.

• Greedy choice: At each step, we choose a “light edge” (min-weight) that connects current set
A (the growing MST) to an uncovered vertex.

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 73

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 74

8

3

7

0

4

1

6 5

2

1

3

3
3

24
5

2

x

x Uncovered (yet)

Covered by the
growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

An MST edge

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 75

8

3

7

0

4

1

6 5

2

1

3

3
3

24
5

2

MST Weight = 1 + 2 + 2 + 3 + 3 + 3 + 4 + 5 = 23

Same tree as the one we
found with Kruskal’s
algorithm

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 76

Greedy choice

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 77

Greedy choice

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 78

Greedy choice

Need a fast way to select a new edge to add to
the tree formed by the edges in A

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 79

Greedy choice

Uses “Min-Priority Queue”
data structure

Need a fast way to select a new edge to add to
the tree formed by the edges in A

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 80

Uses “Min-Priority Queue” data structure

• All vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

• For each vertex v, the attribute v.key is the
minimum weight of any edge connecting v to
a vertex in the tree

• v.key = ∞ if there is no such edge.
• Terminates when Q is empty.

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 81

Uses “Min-Priority Queue” data structure

• All vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

• For each vertex v, the attribute v.key is the
minimum weight of any edge connecting v to
a vertex in the tree

• v.key = ∞ if there is no such edge.
• Terminates when Q is empty.

initialization

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 82

Uses “Min-Priority Queue” data structure

• All vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

• For each vertex v, the attribute v.key is the
minimum weight of any edge connecting v to
a vertex in the tree

• v.key = ∞ if there is no such edge.
• Terminates when Q is empty.

r is the first node

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 83

Uses “Min-Priority Queue” data structure

• All vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

• For each vertex v, the attribute v.key is the
minimum weight of any edge connecting v to
a vertex in the tree

• v.key = ∞ if there is no such edge.
• Terminates when Q is empty.

Initializing the
priority queue

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 84

Uses “Min-Priority Queue” data structure

• All vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

• For each vertex v, the attribute v.key is the
minimum weight of any edge connecting v to
a vertex in the tree

• v.key = ∞ if there is no such edge.
• Terminates when Q is empty.

u incident on a light
edge crosses (V-Q, Q)

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 85

Uses “Min-Priority Queue” data structure

u incident on a light
edge crosses (V-Q, Q) Adding (u, u.𝝅) to Aà

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 86

Uses “Min-Priority Queue” data structure

Updating the key and
parent attributes for
the adjacent vertices

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 87

Running time?

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the

tree to a vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 88

Running time?

Depends on the implementation of the priority
queue.

Prim’s Algorithm
• Running time
• Depends on the priority queue implementation

• Binary heap (binary min-heap)
• [Lines 1-5] O(|V|)

• While loop O(|V|)
• Extract-Min O(log |V|)
• [Lines 8-11] O(|E|) (total as we have 2|E| edges)
• [Line 11] updating the key in a min-heap (also

known as Decrease-Key operation) takes O(log |V|)

• Total: O(|V|log |V| + |E|log |V|) → O(E log V)
• (Similar to Kruskal’s algorithm)

CS-3510: Design and Analysis of Algorithms | Summer 2022 89

Prim’s Algorithm
• Running time
• Depends on the priority queue implementation

• Binary heap (binary min-heap)
• [Lines 1-5] O(|V|)

• While loop O(|V|)
• Extract-Min O(log |V|)
• [Lines 8-11] O(|E|) (total as we have 2|E| edges)
• [Line 11] updating the key in a min-heap (also

known as Decrease-Key operation) takes O(log |V|)

• Total: O(|V|log |V| + |E|log |V|) → O(E log V)
• The running time can be improved using Fibonacci heap

(improves Deacrease-Key to O(1) and overall O(E + V log V)

CS-3510: Design and Analysis of Algorithms | Summer 2022 90

MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree
of G.

• Tree T spans the graph G

• Minimum spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 91

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(E log V)

Prim Greedy Priority Queue (Binary Min-Heap) O(E log V)

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 92

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 93

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

References
• The lecture slides are mainly based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

94CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

