CS-3510:
Design and Analysis of Algorithms

Graph Algorithms:

Minimum Spanning Tree
Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

" QPart 2:
. -Recursion
. -Divide-and-Conquer ~

QPart 1:
-Introduction, | /~ UPart 3: Y
-Analysis of Algorithms \ . -Dynamic Progr ammmg/}
-Asymptotic Order of Growth | \\ >

-Big-O Notation

OPart 6:
-Network Flow

QPart 7:

-NP-Completeness -

QPart 4:
-Greedy Algorithm

QPart 5: Graph Algorithm
- Definition, Traversal

- Grid Problems

- Minimum Spanning Tree
- Shortest Path Problem
- Topological Sorting

are b

Cray

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Graph

* Graph definition and representation * Graph problems/algorithms
* Adjacency matrix * Minimum spanning tree (MST)
* Adjacency list e Kruskal (greedy)

* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
* Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
* Topological sorting e Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
* Connected components

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

(8]

Graph

* Graph problems/algorithms
* Minimum spanning tree (MST)
* Kruskal (greedy)
* Prim (greedy)

 Shortest path (directed weighted graphs)
* Dijkstra (greedy)

* Bellman-Ford (dynamic programming)
* Floyd-Warshall (dynamic programming)

* Flow network

* Max-flow min-cut theorem
» Ford-Fulkerson algorithm

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Minimum Spanning Tree

* Weighted graphs
* Each edge has an associated weight, cost, or distance.
* Edge (u,v) 2 w(u, v)

* Spanning tree

* Given graph G = (V,E), atree T = (V, E) such that E;x € E is a spanning tree
of G.

* Tree T spans the graph G

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G

Y

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Spanning tree:

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Total weight=1+3+3+10+12+2+7+2=40

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree

of G.
* Tree T spans the graph G

% CS-3510: Design and Analysis of Algorithms | Summer 2022

10

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Another spanning tree:

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Total weight=1+10+3+6+2+5+4+2=33

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Minimum Spanning Tree (MST)

* Weighted graphs
* Each edge has an associated weight, cost, or distance.
* Edge (u,v) 2 w(u, v)

* Spanning tree

* Given graph G = (V,E), atree T = (V, E) such that E;x € E is a spanning tree
of G.

* Tree T spans the graph G

* Minimum spanning tree = Minimum-weight spanning tree

* Spanning tree T for G such that the sum w(T) = » " w(u,v) 1s minimized
(u,v)eT

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Minimum Spanning Tree (MST)

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G

e Minimum spanning tree = Minimum-weight spanning tree

* Spanning tree T for G such that the sum w(T) =) w(w,v) is minimized
(u,v)eT

* Approach: “Greedy choice”

* Algorithms:
e Kruskal
 Prim

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Growing a Minimum Spanning Tree

* This greedy strategy is captured by the following generic method,
which grows the minimum spanning tree one edge at a time.

* The generic method manages a set of edges A, maintaining the
following loop nvariant:

* Prior to each iteration, A is a subset of some minimum spanning tree.

* At each step, we determine an edge (u, v) that we can add to A
without violating this invariant A U {(u, v)} is also a subset of an MST

* An edge 1s safe edge if adding it to A will not violate the invariant.

Growing a Minimum Spanning Tree

* This greedy strategy is captured by the following generic method,
which grows the minimum spanning tree one edge at a time.

GENERIC-MST (G, w)

1 A=90

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

5 return A

* Tricky part? Finding a safe edge at each iteration!

o
v

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

)
V-

% CS-3510: Design and Analysis of Algorithms | Summer 2022

17

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .
8 /N7
C
9
st ' / 2 \ ts
) 14
V-S| 7 6 £ YES

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S,
and the otherin V' — S

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

18

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S,
and the otherm V' — §

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

19

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .
8 /N7
C
9
st ' / 2 \ ts
) 14
V-S| 7 6 £ YES

* With this definition, we say
* A cut respects a set A of edges 1f no edge 1n A crosses the cut.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

20

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

V-S| | V-5

* With this definition, we say

* An edge 1s a light edge crossing a cut if its weight 1s the minimum of any edge
crossing the cut.

* Note that there can be more than one light edge crossing a cut in the case of ties.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S, and
the othermV — S

* A cut respects a set A of edges 1f no edge 1n A crosses the cut.

* An edge 1s a light edge crossing a cut if its weight 1s the minimum of any edge
crossing the cut.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Generic-MST

 Theorem:

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
in some minimum spanning tree for G, let (S,V — S) be any cut of

G that respects A, and let (u, v) be a light edge crossing this cut. Then
edge (u, v) 1s safe for A.

v
L 4

Generic-MST

 Theorem:

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
in some minimum spanning tree for G, let (S,V — S) be any cut of

G that respects A, and let (u, v) be a light edge crossing this cut. Then
edge (u, v) 1s safe for A.

GENERIC-MST (G, w)

1 A=90

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A4
4 A= AU{(u,v)}

5 return A

e
4

Generic-MST

GENERIC-MST (G, w)

* Notes
: . 1 A=190
* The setA .18 always acyclic. 2 while A does not form a spanning tree
* Atany point Gy = (V, 4) 1s a forest 3 find an edge (u, v) that is safe for A
» At first when A = ¢, we have |V]| trees 4 A= AU{(u,v)}

in the forest G, each a tree of one vertices 5 return 4
* At each iteration, the number of trees 1s reduced by one.

* While loop (line 2-4) runs for |V|-1 times to find the edges required to form
the minimum spanning tree.

* The method terminates when we have one tree (clearly, with |V|-1 edges).

e
4

Generic-MST

* Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
In some minimum spanning tree for G,

* [Theorem:] let (S,V — S) be any cut of G that respects A, and let
(u, v) be a light edge crossing this cut. Then edge (u, v) is safe for A.

* [Corollary:] let C = (V., E;) be a connected component (tree) in the

forest G, = (V,A). If (u, v) is a light edge connecting C to some other
component in G, Then edge (u, v) 1s safe for A.

e Pf. Cut (V.,V — V) respects A, and (u, v) is a light edge for this cut - safe

: ¢® (CS-3510: Design and Analysis of Algorithms | Summer 2022 26

MST Algorithms

* Kruskal’s algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that
connects two distinct components. (so it 1s not creating a loop)

* Prim’s algorithm
* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

v
L 4

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

Y

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

Y

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

e
4

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

31

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

32

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

33

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

34

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

35

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

36

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

Cannot add this one
(not two distinct
components!)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

37

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

38

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

39

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

- [HEGEE b NE- "

3 1 2
4 7

% CS-3510: Design and Analysis of Algorithms | Summer 2022

40

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects

two distinct components.
MST Weight=1+2+2+3+3+3+4+5=23

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

41

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice
A=10
for each vertex v € G.V
MAKE-SET (V)
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

Uses “disjoint-set” (also
known as “union-find’)
data structure

O 00 1O W A~ W=

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=0 Creating one disjoint-set

2 for each vertex v € G.V per each graph vertex

3 MAKE-SET(v)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET(u) # FIND-SET(v) kot ab tuhibnlEind™]
7 A = AU{(u,v)] data structure

8 UNION(u, v)

9 return A

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

A=90
for each vertex v € G.V
MAKE-SET(v) To find the light weight at each step
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

Uses “disjoint-set” (also
known as “union-find’)
data structure

O 00 1O W A~ W=

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET(v) For the current min-weight (light weight) edge

4 sort the edges of G. E into nondecreasing order by weight w

5 for e.ach edge (4, v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) known as “union-find”)
7 A =AU{(u,v)} data structure

8 UNION(u, v)

9 return A

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(w,v)} Ifuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(u,v)} TIfuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(u,v)} TIfuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Kruskal’s Algorithm

T'he set A 1s a forest whose vertices are all those of the given graph.

T'he safe edge added to A 1s always a least-weight edge 1n the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

A=10
for each vertex v € G.V Running time?
MAKE-SET (V)
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

O 00 ~1J O\ WD A W —

e
4

Kruskal’s Algorithm

* Running time

MST-KRUSKAL(G, w) Running time?

1 A=90
d 2 for eachvertex v e G.V
Depends on disjoint-set implementation MAKE-SET(1)
e Most efficient: 4 :ort thehedges (()f G.) E i1go noniecreasing (;)rder by weiiht :]
PSR ¢ . 5 for each edge (u4,v) € G.E, taken in nondecreasing order by weight
union-by-rank with path compression 1 if FIND-SET () # FIND-SET (v)
e CLRS 21 7 A =AU{u,v)}
8 UNION(u, v)
bt Make—Set O(lVl) 9 return A
* Sorting edges O(|E| log|E]|)
s Tl i 5.9 a(N) is the Inverse
or loop (lines 5-8) Ackermann function
* Find-Set and Union O(|E|) related to the performance
 O((JV|+ |EDa(lV])) (along with the Make-Set operations) of the optimized disjoint-

* Assume G is connected: |[E| = |V|—-1

« O((IVI+ IEDa(lV]) = O(IEla(lV])

set data structure.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

50

Kruskal’s Algorithm

MST-KRUSKAL(G, w)

A=10

for each vertex v € G.V
MAKE-SET(V)

sort the edges of G. E into nondecreasing order by weight w

for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET(u) # FIND-SET(v)

Running time?

* Running time
* Depends on disjoint-set implementation

* Most efficient:
union-by-rank with path compression

O o0 DN W=

e CLRS 21 A =AU{u,v)}
UNION(u, v)
* Make-Set O(|V]) return A

* Sorting edges O(|E| log|E|)

* For loop (lines 5-8)
« O((VI+ [EDa(IVD)) = O(IE|a(IV]))
* a(|V]) = 0(og|V|) = O(logl|E|)

e Also, observing |E| < |V]|?

* O(|E] log|V])

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

* Very similar to Kruskal’s algorithm

* Greedy > At each step, it adds to the tree an edge that contributes the minimum amount
possible to the tree’s weight.

* Growing MST

 Main difference

* The edges in the growing set A always form a single tree, i.e., instead of starting from a forest
of single-node trees, we start with an arbitrary node and grow the MST from that node by
making greedy decisions, one at a time.

* Greedy choice: At each step, we choose a “light edge” (min-weight) that connects current set
A (the growing MST) to an uncovered vertex.

v
L 4

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

Y

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

@ Uncovered (yet)
Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

v
L 4

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

= An MST edge

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 55

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

= An MST edge

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 56

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 57

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 58

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 59

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 60

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 61

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 62

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 63

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 64

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 65

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 66

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 67

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 68

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy

choice (can connect
the current MST to
an uncovered node

memmm An MST edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 69

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

memmm An MST edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 70

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

memmm An MST edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 71

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

memmm An MST edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 72

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

memmm An MST edge

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 73

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
@ Uncovered (yet)

Covered by the
@ growing MST

Not available for
greedy choice (yet)

Available for greedy
choice (can connect
the current MST to
an uncovered node

mems An MST edge

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 74

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not 1n the tree.
MST Weight=1+2+2+3+3+3+4+5=23

Same tree as the one we
found with Kruskal’s
algorithm

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 75

Prim’s Algorithm

* The set A forms a single tree.

tree to a vertex not in the tree.

MST-PRIM(G, w,)

forcachu € G.V
u.key = o0
u.m = NIL
r.key =0
Q =GV
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifveQandw(u,v) <v.key
VT = U

v.key = w(u,v)

—_— O o000 IO\ AW —

[y WY

Greedy choice

* The safe edge added to A 1s always a least-weight edge connecting the

% CS-3510: Design and Analysis of Algorithms | Summer 2022

76

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A
tree to a vertex not 1n the tree:

MST-PRIM(G, w,)

forcachu € G.V
u.key = o0
u.m = NIL _ :

il A={w,v.m):veV —-{r}}

Q =G.V

while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]

ifveQandw(u,v) <v.key
V.T = U

v.key = w(u,v)

Greedy choice

—_— O o000 IO\ AW —

[y WY

always a least-weight edge connecting the

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

77

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w, r) Greedy choice
forcachu € G.V

u.key = oo
4 Hey= NIL Need a fast way to select a new edge to add to

r.key = 0 the tree formed by the edges in A
Q =GV
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifveQandw(u,v) <v.key
V.T = U

v.key = w(u,v)

—_— O o000 IO\ AW —

[y WY

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 78

Prim’s Algorithm

* The set A forms a single tree.

tree to a vertex not in the tree.

MST-PRIM(G, w,)

forcachu € G.V
u.key = oo
u.m = NIL
r.key = 0
Q =GV
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifveQandw(u,v) <v.key
VT = U

v.key = w(u,v)

—_— O o000 IO\ AW —

[y WY

* The safe edge added to A 1s always a least-weight edge connecting the

Greedy choice

Need a fast way to select a new edge to add to
the tree formed by the edges in A

Uses “Min-Priority Queue”
data structure

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

79

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w,) Uses “Min-Priority Queue” data structure
1 foreachu € G.V

2 u.key = oo All vertices that are not in the tree reside in a
3 u.m = NIL . T k b
ke =0 min-priority queue Q based on a key attribute.
5 Q=G * For each vertex v, the attribute v.key 1s the
6 while Q # 0 Il Y . ,
. i = EXTRACTMIN(D) minimum weight of any edge connecting v to
8 for each v € G.Adj[u] a vertex 1n the tree

1(9) ey i g f‘duw("’ Al * v.key = = if there is no such edge.

11 b.key = w(u, v) * Terminates when Q 1s empty.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 80

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w,) Uses “Min-Priority Queue” data structure
1 foreachu € G.V Iinitialization
2 u.key = oo * All vertices that are not in the tree reside in a
3 u.m = NIL ; T K i
AT F kg =0 min-priority queue Q based on a key attribute.
5 Q=G * For each vertex v, the attribute v.key 1s the
6 while Q # 0 Il Y . ,
. i = EXTRACTMIN(D) minimum weight of any edge connecting v to
8 for each v € G.Adj[u] a vertex 1n the tree
1(9) iy i g f‘duw("’ Al o * v.key = « if there is no such edge.
11 b.key = w(u, v) * Terminates when Q 1s empty.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 81

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w,) Uses “Min-Priority Queue” data structure

1 foreachu € G.V

2 u.key = oo All vertices that are not in the tree reside in a
3 u.m = NIL . 1 b d k tt b t
R (e first node min-priority queue Q base on a key atribute.
5 Q=G * For each vertex v, the attribute v.key 1s the
6 while Q # 0 Il Y . ,

. i = EXTRACTMIN(D) minimum weight of any edge connecting v to
8 for each v € G.Adj[u] a vertex 1n the tree

1(9) iy i g f‘duw("’ Al o * v.key = « if there is no such edge.

11 b.key = w(u, v) * Terminates when Q 1s empty.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 82

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w,) Uses “Min-Priority Queue” data structure

1 foreachu € G.V

2 u.key = oo * All vertices that are not in the tree reside in a
> o min-priority queue Q based on a key attribute
4 rkey =0 Tpitializing the P Y4 . iy :
5 0=G.V L riority quete * For each vertex v, the attribute vkey 1s the
6 while Q #0 . - - '

; i = EXTRACTMINGD) minimum weight of any edge connecting v to
8 for each v € G.Adj[u] a vertex 1n the tree

i ol f‘duw("’ V) <vky o ykey = if there is no such edge.

1 | kel = il 1) e Terminates when Q is empty.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w,) Uses “Min-Priority Queue” data structure
1 foreachu € G.V
g u.key = oo All vertices that are not in the tree reside in a
.7T = NIL . T z
T min-priority queue Q based on a key attribute.
ke = u incident on a light . :
5 0=0G. V 5 s V) * For each vertex v, the attribute v.key 1s the
6 while Q # 0 = It B . ,
. i = EXTRACTIMINGD) minimum weight of any edge connecting v to
8 for each v € G.Adj[u] a vertex 1n the tree
1(9) iy i g f‘duw("’ Al o * v.key = « if there is no such edge.
11 b.key = w(u, v) * Terminates when Q 1s empty.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 84

Prim’s Algorithm

* The set A forms a single tree.

tree to a vertex not in the tree.

MST-PRIM(G, w, r) Uses “Min-Priority Queue” data structure

forecachu € G.V
u.key = oo
u.m = NIL
r.key =0
v%hile GQ I; 0, u incident on a light
u = EXTRACT-MIN(Q) edge crosses (V-Q, Q)
for each v € G.Adj[u]
ifveQandw(u,v) <v.key
V.T = U

v.key = w(u,v)

> Adding (u,u.) to A

—_— O o000 IO\ AW —

[y WY

* The safe edge added to A 1s always a least-weight edge connecting the

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

85

Prim’s Algorithm

* The set A forms a single tree.

tree to a vertex not in the tree.

MST-PRIM(G, w, r) Uses “Min-Priority Queue” data structure
1 foreachu € G.V

2 u.key = o0

3 u.m = NIL

4 r.key =0

5 Q=G.V

6 while Q #0

7 u = EXTRACT-MIN(Q)

8 for each v € G.Adj[u]

9 ifve Qandw(u,v) <v.key Updating the key and
10 VT = U parent attributes for
i v.key = w(u,v) the adjacent vertices

* The safe edge added to A 1s always a least-weight edge connecting the

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

86

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the

tree to a vertex not in the tree.

MST-PRIM(G, w, r) Running time?

foreachu € G.V
u.key = 0o
u.m = NIL
r.key =0
0=GV
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifveQandw(u,v) < v.key
VT = U

v.key = w(u,v)

—_— O O 00 IO\ b WLWN -

[

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

87

Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A 1s always a least-weight edge connecting the
tree to a vertex not 1n the tree.

MST-PRIM(G, w, r) Running time?

for eachu € G.V : i l0Ti
o e:fke)‘)‘ E L Depends on the implementation of the priority

u.w = NIL queue.
r.key =0
Q =GV
while Q # 0

u = EXTRACT-MIN(Q)

for each v € G.Adj[u]

ifveQandw(u,v) <v.ke
V.T = U

v.key = w(u,v)

—_— O OV oo~ W A W —

[

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 88

Prim’s Algorithm

* Running time il . . MST-PRIM(G, w,)
* Depends on the priority queue implementation

1 foreachu € G.V
 Binary heap (binary min-heap) 2 u.key = 0o
e [Lines 1-5] O(|V]) 3 u.w = NIL
I 4 r.key =0
* While loop O(|V|) 5 Q=G.V
« Extract-Min O(log |V]) '67 while O #E@ npEn.
. u = EXTRACT-MIN
. [L?nes 8-11] O(.|E|) (total a§ we h.ave 2|E| edges) 8 for cach v € G.Adj[u}
* [Line 11] updating the key in a min-heap (also 9 ifveQandwu,v) <v.key
known as Decrease-Key operation) takes O(log |V]) 10 VT = U
11 v.key = w(u,v)

 Total: O(|V]|log |V| + |E|log |[V]) — O(|E| log|V|)
* (Similar to Kruskal’s algorithm)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 89

Prim’s Algorithm

5 : ;
Runnlng time MST-PRIM(G, w, r)

* Depends on the priority queue implementation

1 foreachu € G.V
* Binary heap (binary min-heap) 2 u.key = oo
e [Lines 1-5] O(|V|) 5 o e B
4 r.key =0
* While loop O(|V|) 5 Q=G.V
e Extract-Min O(log |V|) _6] while 0 ’é fmm o
. U = %
. [L?nes 8-11] O(.|E|) (total a§ we h.ave 2|E| edges) 8 for each v € G.Adj[u]
e [Line 11] updating the key in a min-heap (also 9 ifveQandwu,v) <v.key
known as Decrease-Key operation) takes O(log |V|) 10 VT = U
11 v.key = w(u,v)

 Total: O(|V]log |V| + |E|log |V]) — O(|E| log|V|)
* The running time can be improved using Fibonacci heap
(improves Deacrease-Key to O(1) and overall O(|E| +|V|log|V]|)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 90

MST: Summary

* Spanning tree
* Given graph G = (V,E),atree T = (V, E7) such that E; € E is a spanning tree

* Minimum spanning tree

of G.

* Tree T spans the graph G

* Spanning tree T for G such that the sum w(7) = Z w(u,v) 1S minimized

(u,v)eT

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(|E| log|V])
Prim Greedy Priority Queue (Binary Min-Heap) O(|E| log|V])

Graph

* Graph problems/algorithms
* Minimum spanning tree (MST)
* Kruskal (greedy)
* Prim (greedy)

 Shortest path (directed weighted graphs)
* Dijkstra (greedy)

* Bellman-Ford (dynamic programming)
* Floyd-Warshall (dynamic programming)

* Flow network

* Max-flow min-cut theorem
» Ford-Fulkerson algorithm

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 92

Graph

* Graph definition and representation * Graph problems/algorithms
* Adjacency matrix e Minimum spanning tree (MST)
* Adjacency list « Kruskal (greedy)

* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
* Breadth first search (BFS) « Dijkstra (greedy)
 Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
 Testing bipartiteness Floyd-Warshall (dynamic programming)
« Tree traversal (Ievel-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
« Topological sorting » Ford-Fulkerson algorithm

* Tree traversal (in-order, pre-order, post-order)

* Connected components

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 93

References

* The lecture slides are mainly based on the suggested textbooks and the
corresponding published lecture notes:

CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher
Education., 2008.

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 94

http://www.cs3510.com/policies/

