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We are here!



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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• Graph problems/algorithms
• Minimum spanning tree (MST)
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Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance. 
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
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• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree (MST)
• Weighted graphs
• Each edge has an associated weight, cost, or distance. 
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree 
• Spanning tree T for G such that the sum                                  is minimized 
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Minimum Spanning Tree (MST)
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree 

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree 
• Spanning tree T for G such that the sum                                  is minimized
• Approach: “Greedy choice” 
• Algorithms:
• Kruskal
• Prim

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 14



Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method, 

which grows the minimum spanning tree one edge at a time. 
• The generic method manages a set of edges A, maintaining the 

following loop invariant: 
• Prior to each iteration, A is a subset of some minimum spanning tree. 

• At each step, we determine an edge !, # that we can add to A 
without violating this invariant $ ∪ !, # is also a subset of an MST
• An edge is safe edge if adding it to A will not violate the invariant.
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Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method, 

which grows the minimum spanning tree one edge at a time. 

• Tricky part? Finding a safe edge at each iteration!
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Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , . 
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Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , . 

• With this definition, we say
• An edge 2, 3 ∈ - crosses the cut /, , − / if one of this endpoints is in /, 

and the other in , − /
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Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , . 

• With this definition, we say
• A cut respects a set A of edges if no edge in A crosses the cut. 
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Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , . 

• With this definition, we say
• An edge is a light edge crossing a cut if its weight is the minimum of any edge 

crossing the cut. 
• Note that there can be more than one light edge crossing a cut in the case of ties. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 21



Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , . 

• With this definition, we say
• An edge 2, 3 ∈ - crosses the cut /, , − / if one of this endpoints is in /, and 

the other in , − /
• A cut respects a set A of edges if no edge in A crosses the cut. 
• An edge is a light edge crossing a cut if its weight is the minimum of any edge 

crossing the cut. 
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Generic-MST
• Theorem:
Let & = (), *) be a connected, undirected graph with a real-valued 
weight function w defined on E. Let A be a subset of E that is included 
in some minimum spanning tree for &, let ,, ) − , be any cut of 
& that respects $, and let (!, #) be a light edge crossing this cut. Then 
edge (!, #) is safe for $.
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Generic-MST
• Notes
• The set A is always acyclic.
• At any point G" = (,, 5) is a forest
• At first when 5 = 6, we have |V| trees

in the forest G", each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4) runs for |V|-1 times to find the edges required to form 

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).
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Generic-MST
• Let & = (), *) be a connected, undirected graph with a real-valued 

weight function w defined on E. Let A be a subset of E that is included 
in some minimum spanning tree for &,
• [Theorem:] let ,, ) − , be any cut of & that respects $, and let 
(!, #) be a light edge crossing this cut. Then edge (!, #) is safe for $.
• [Corollary:] let . = ()! , *!) be a connected component (tree) in the 

forest G" = (), $). If (!, #) is a light edge connecting . to some other 
component in G", Then edge (!, #) is safe for $.
• Pf. Cut ,# , , − ,# respects 5, and (2, 3) is a light edge for this cut à safe

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 26



MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that 

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree. 
• The safe edge added to A is always a least-weight edge connecting the tree to a 

vertex not in the tree. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 32

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 38

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 39

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that connects 

two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Uses “disjoint-set” (also 
known as “union-find”) 
data structure



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Uses “disjoint-set” (also 
known as “union-find”) 
data structure

Creating one disjoint-set 
per each graph vertex



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Uses “disjoint-set” (also 
known as “union-find”) 
data structure

To find the light weight at each step



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Uses “disjoint-set” (also 
known as “union-find”) 
data structure

For the current min-weight (light weight) edge



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Uses “disjoint-set” (also 
known as “union-find”) 
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the 
growing MST and merge the two tress



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Uses “disjoint-set” (also 
known as “union-find”) 
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the 
growing MST and merge the two tress



Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph 

that connects two distinct components. 
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Greedy choice

Running time?



Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression 

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|E| log|-|)
• For loop (lines 5-8)

• Find-Set and Union O(|E|) 
• O( % + ' (( % ))
• Assume G is connected: |E| ≥ |V|-1
• O % + ' ( % → O |'|( %
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Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression 

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|-| log|-|)
• For loop (lines 5-8)

• O % + ' ( % → O |'|( %
• ( % = 2 log % = 2 log '

• Also, observing - < , $

• O(|-| log|,|)
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Running time?



Prim’s Algorithm
• The set A forms a single tree. 
• The safe edge added to A is always a least-weight edge connecting the tree to a 

vertex not in the tree. 

• Very similar to Kruskal’s algorithm
• Greedy à At each step, it adds to the tree an edge that contributes the minimum amount 

possible to the tree’s weight. 
• Growing MST

• Main difference
• The edges in the growing set A always form a single tree, i.e., instead of starting from a forest 

of single-node trees, we start with an arbitrary node and grow the MST from that node by 
making greedy decisions, one at a time.

• Greedy choice: At each step, we choose a “light edge” (min-weight) that connects current set 
A (the growing MST) to an uncovered vertex.
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