
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Graph Algorithms:
Minimum Spanning Tree

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

8

3

7

0

4

1

6 5

2

1

3

3

10 12

2

7

2

Spanning tree:

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

8

3

7

0

4

1

6 5

2

1

3

3

10 12

2

7

2

Total weight = 1 + 3 + 3 + 10 + 12 + 2 + 7 + 2 = 40

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

8

3

7

0

4

1

6 5

2

1
3

10
6 24

5
2

Another spanning tree:

Minimum Spanning Tree
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

8

3

7

0

4

1

6 5

2

1
3

10
6 24

5
2

Total weight = 1 + 10 + 3 + 6 + 2 + 5 + 4 + 2 = 33

Minimum Spanning Tree (MST)
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Minimum Spanning Tree (MST)
• Spanning tree
• Given graph G = (V, E), a tree + = ,, -! such that -! ⊆ - is a spanning tree

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree
• Spanning tree T for G such that the sum is minimized
• Approach: “Greedy choice”
• Algorithms:
• Kruskal
• Prim

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method,

which grows the minimum spanning tree one edge at a time.
• The generic method manages a set of edges A, maintaining the

following loop invariant:
• Prior to each iteration, A is a subset of some minimum spanning tree.

• At each step, we determine an edge !, # that we can add to A
without violating this invariant $ ∪ !, # is also a subset of an MST
• An edge is safe edge if adding it to A will not violate the invariant.

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method,

which grows the minimum spanning tree one edge at a time.

• Tricky part? Finding a safe edge at each iteration!

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

• With this definition, we say
• An edge 2, 3 ∈ - crosses the cut /, , − / if one of this endpoints is in /,

and the other in , − /

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

• With this definition, we say
• An edge 2, 3 ∈ - crosses the cut /, , − / if one of this endpoints is in /,

and the other in , − /

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

• With this definition, we say
• A cut respects a set A of edges if no edge in A crosses the cut.

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

• With this definition, we say
• An edge is a light edge crossing a cut if its weight is the minimum of any edge

crossing the cut.
• Note that there can be more than one light edge crossing a cut in the case of ties.

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Some Definitions
• Cut
• A cut /, , − / of an undirected graph 1 = (,, -) is a partition of , .

• With this definition, we say
• An edge 2, 3 ∈ - crosses the cut /, , − / if one of this endpoints is in /, and

the other in , − /
• A cut respects a set A of edges if no edge in A crosses the cut.
• An edge is a light edge crossing a cut if its weight is the minimum of any edge

crossing the cut.

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Generic-MST
• Theorem:
Let & = (), *) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for &, let ,,) − , be any cut of
& that respects $, and let (!, #) be a light edge crossing this cut. Then
edge (!, #) is safe for $.

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Generic-MST
• Theorem:
Let & = (), *) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for &, let ,,) − , be any cut of
& that respects $, and let (!, #) be a light edge crossing this cut. Then
edge (!, #) is safe for $.

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Generic-MST
• Notes
• The set A is always acyclic.
• At any point G" = (,, 5) is a forest
• At first when 5 = 6, we have |V| trees

in the forest G", each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4) runs for |V|-1 times to find the edges required to form

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Generic-MST
• Let & = (), *) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for &,
• [Theorem:] let ,,) − , be any cut of & that respects $, and let
(!, #) be a light edge crossing this cut. Then edge (!, #) is safe for $.
• [Corollary:] let . = ()! , *!) be a connected component (tree) in the

forest G" = (), $). If (!, #) is a light edge connecting . to some other
component in G", Then edge (!, #) is safe for $.
• Pf. Cut ,# , , − ,# respects 5, and (2, 3) is a light edge for this cut à safe

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Cannot add this one
(not two distinct
components!)

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

8

3

7

0

4

1

6 5

2

1

3

3

10 9

4

6 3

10 12

24

7

5
2

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that connects

two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

8

3

7

0

4

1

6 5

2

1

3

3
3

24
5

2

MST Weight = 1 + 2 + 2 + 3 + 3 + 3 + 4 + 5 = 23

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

Creating one disjoint-set
per each graph vertex

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

To find the light weight at each step

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structure

For the current min-weight (light weight) edge

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Greedy choice

Uses “disjoint-set” (also
known as “union-find”)
data structureIf u and v belongs to different trees

(disjoint sets), then add (u,v) to the
growing MST and merge the two tress

Kruskal’s Algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph

that connects two distinct components.

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Greedy choice

Running time?

Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|E| log|-|)
• For loop (lines 5-8)

• Find-Set and Union O(|E|)
• O(% + ' ((%))
• Assume G is connected: |E| ≥ |V|-1
• O % + ' (% → O |'|(%

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Running time?

Kruskal’s Algorithm
• Running time
• Depends on disjoint-set implementation

• Most efficient:
union-by-rank with path compression

• CLRS 21
• Make-Set O(|V|)
• Sorting edges O(|-| log|-|)
• For loop (lines 5-8)

• O % + ' (% → O |'|(%
• (% = 2 log % = 2 log '

• Also, observing - < , $

• O(|-| log|,|)

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Running time?

Prim’s Algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

• Very similar to Kruskal’s algorithm
• Greedy à At each step, it adds to the tree an edge that contributes the minimum amount

possible to the tree’s weight.
• Growing MST

• Main difference
• The edges in the growing set A always form a single tree, i.e., instead of starting from a forest

of single-node trees, we start with an arbitrary node and grow the MST from that node by
making greedy decisions, one at a time.

• Greedy choice: At each step, we choose a “light edge” (min-weight) that connects current set
A (the growing MST) to an uncovered vertex.

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

References
• The lecture slides are mainly based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

94CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

