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Graph

* Graph definition and representation * Graph problems/algorithms
* Adjacency matrix * Minimum spanning tree (MST)
* Adjacency list e Kruskal (greedy)

* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
* Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
* Topological sorting e Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
* Connected components
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Graph

* Graph problems/algorithms
* Minimum spanning tree (MST)
* Kruskal (greedy)
* Prim (greedy)

 Shortest path (directed weighted graphs)
* Dijkstra (greedy)

* Bellman-Ford (dynamic programming)
* Floyd-Warshall (dynamic programming)

* Flow network

* Max-flow min-cut theorem
» Ford-Fulkerson algorithm
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Minimum Spanning Tree

* Weighted graphs
* Each edge has an associated weight, cost, or distance.
* Edge (u,v) 2 w(u, v)

* Spanning tree

* Given graph G = (V,E), atree T = (V, E) such that E;x € E is a spanning tree
of G.

* Tree T spans the graph G
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Spanning tree:
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Total weight=1+3+3+10+12+2+7+2=40
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree

of G.
* Tree T spans the graph G
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Another spanning tree:
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Minimum Spanning Tree

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G Total weight=1+10+3+6+2+5+4+2=33
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Minimum Spanning Tree (MST)

* Weighted graphs
* Each edge has an associated weight, cost, or distance.
* Edge (u,v) 2 w(u, v)

* Spanning tree

* Given graph G = (V,E), atree T = (V, E) such that E;x € E is a spanning tree
of G.

* Tree T spans the graph G

* Minimum spanning tree = Minimum-weight spanning tree

* Spanning tree T for G such that the sum w(T) = » " w(u,v) 1s minimized
(u,v)eT
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Minimum Spanning Tree (MST)

* Spanning tree

« Given graph G = (V,E),atree T = (V, E) such that E; € E is a spanning tree
of G.

* Tree T spans the graph G

e Minimum spanning tree = Minimum-weight spanning tree

* Spanning tree T for G such that the sum w(T) = ) w(w,v) is minimized
(u,v)eT

* Approach: “Greedy choice”

* Algorithms:
e Kruskal
 Prim
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Growing a Minimum Spanning Tree

* This greedy strategy is captured by the following generic method,
which grows the minimum spanning tree one edge at a time.

* The generic method manages a set of edges A, maintaining the
following loop nvariant:

* Prior to each iteration, A is a subset of some minimum spanning tree.

* At each step, we determine an edge (u, v) that we can add to A
without violating this invariant A U {(u, v)} is also a subset of an MST

* An edge 1s safe edge if adding it to A will not violate the invariant.




Growing a Minimum Spanning Tree

* This greedy strategy is captured by the following generic method,
which grows the minimum spanning tree one edge at a time.

GENERIC-MST (G, w)

1 A=90

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

5 return A

* Tricky part? Finding a safe edge at each iteration!

o
v




Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

)
V-
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Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .
8 /N7
C
9
st ' / 2 \ ts
) 14
V-S| 7 6 £ YES

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S,
and the otherin V' — S
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Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S,
and the otherm V' — §
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Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .
8 /N7
C
9
st ' / 2 \ ts
) 14
V-S| 7 6 £ YES

* With this definition, we say
* A cut respects a set A of edges 1f no edge 1n A crosses the cut.
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Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

V-S| | V-5

* With this definition, we say

* An edge 1s a light edge crossing a cut if its weight 1s the minimum of any edge
crossing the cut.

* Note that there can be more than one light edge crossing a cut in the case of ties.
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Some Detfinitions

* Cut
« Acut (S,V —S) of an undirected graph G = (V, E) is a partition of V .

* With this definition, we say

* An edge (u,v) € E crosses the cut (S,V — S) if one of this endpoints is in S, and
the othermV — S

* A cut respects a set A of edges 1f no edge 1n A crosses the cut.

* An edge 1s a light edge crossing a cut if its weight 1s the minimum of any edge
crossing the cut.
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Generic-MST

 Theorem:

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
in some minimum spanning tree for G, let (S,V — S) be any cut of

G that respects A, and let (u, v) be a light edge crossing this cut. Then
edge (u, v) 1s safe for A.

v
L 4




Generic-MST

 Theorem:

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
in some minimum spanning tree for G, let (S,V — S) be any cut of

G that respects A, and let (u, v) be a light edge crossing this cut. Then
edge (u, v) 1s safe for A.

GENERIC-MST (G, w)

1 A=90

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A4
4 A= AU{(u,v)}

5 return A

e
4




Generic-MST

GENERIC-MST (G, w)

* Notes
: . 1 A=190
* The setA .18 always acyclic. 2 while A does not form a spanning tree
* Atany point Gy = (V, 4) 1s a forest 3 find an edge (u, v) that is safe for A
» At first when A = ¢, we have |V]| trees 4 A= AU{(u,v)}

in the forest G, each a tree of one vertices 5 return 4
* At each iteration, the number of trees 1s reduced by one.

* While loop (line 2-4) runs for |V|-1 times to find the edges required to form
the minimum spanning tree.

* The method terminates when we have one tree (clearly, with |V|-1 edges).

e
4




Generic-MST

* Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that 1s included
In some minimum spanning tree for G,

* [Theorem:] let (S,V — S) be any cut of G that respects A, and let
(u, v) be a light edge crossing this cut. Then edge (u, v) is safe for A.

* [Corollary:] let C = (V., E;) be a connected component (tree) in the

forest G, = (V,A). If (u, v) is a light edge connecting C to some other
component in G, Then edge (u, v) 1s safe for A.

« Pf. Cut (V.,V — V) respects A, and (u, v) is a light edge for this cut - safe
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MST Algorithms

* Kruskal’s algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that
connects two distinct components. (so it 1s not creating a loop)

* Prim’s algorithm
* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

v
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

Cannot add this one
(not two distinct
components!)
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects
two distinct components.

- [HEGEE b NE- "

3 1 2
4 7
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A is always a least-weight edge 1n the graph that connects

two distinct components.
MST Weight=1+2+2+3+3+3+4+5=23
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice
A=10
for each vertex v € G.V
MAKE-SET (V)
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

Uses “disjoint-set” (also
known as “union-find’)
data structure

O 00 1O W A~ W=
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=0 Creating one disjoint-set

2 for each vertex v € G.V per each graph vertex

3 MAKE-SET(v)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET(u) # FIND-SET(v) kot ab tuhibnlEind™]
7 A = AU{(u,v)] data structure

8 UNION(u, v)

9 return A
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

A=90
for each vertex v € G.V
MAKE-SET(v) To find the light weight at each step
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

Uses “disjoint-set” (also
known as “union-find’)
data structure

O 00 1O W A~ W=
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET(v) For the current min-weight (light weight) edge

4 sort the edges of G. E into nondecreasing order by weight w

5 for e.ach edge (4, v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) known as “union-find”)
7 A =AU{(u,v)} data structure

8 UNION(u, v)

9 return A
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(w,v)} Ifuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(u,v)} TIfuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress
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Kruskal’s Algorithm

* The set A 1s a forest whose vertices are all those of the given graph.

* The safe edge added to A 1s always a least-weight edge in the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

1 A=10

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight Uses “disjoint-set” (also
6 if FIND-SET (#) # FIND-SET(v) kolowal b Fuhibafind”)
7 A=AU{(u,v)} TIfuandv belongs to different trees data structure

8 UNION(u, v) (disjoint sets), then add (u,v) to the

9 return A growing MST and merge the two tress
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Kruskal’s Algorithm

T'he set A 1s a forest whose vertices are all those of the given graph.

T'he safe edge added to A 1s always a least-weight edge 1n the graph
that connects two distinct components.

MST-KRUSKAL(G, w) Greedy choice

A=10
for each vertex v € G.V Running time?
MAKE-SET (V)
sort the edges of G. E into nondecreasing order by weight w
for cach edge (#,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (#) # FIND-SET(v)
A=AU{u,v)}
UNION(u, v)
return A

O 00 ~1J O\ WD A W —

e
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Kruskal’s Algorithm

MST-KRUSKAL(G, w)
A=10
for each vertex v € G.V
MAKE-SET(V)
sort the edges of G. E into nondecreasing order by weight w

1 Running time?

2

3

4

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight
6

7

8

9

* Running time
* Depends on disjoint-set implementation

* Most efficient:
union-by-rank with path compression

* CLRS 21
* Make-Set O(|V|)
* Sorting edges O(|E| log|E]|)
* For loop (lines 5-8)

* Find-Set and Union O(|E|)
* OVl + [EDa(lVD)
* Assume G is connected: |[E| = |V]-1

« O((IVI+ IEDa(lV]) = O(IEla(lV])

if FIND-SET(u) # FIND-SET(v)
A=AU{(u,v)}
UNION(u, v)
return A
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Kruskal’s Algorithm

MST-KRUSKAL(G, w)

A=10

for each vertex v € G.V
MAKE-SET(V)

sort the edges of G. E into nondecreasing order by weight w

for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET(u) # FIND-SET(v)

Running time?

* Running time
* Depends on disjoint-set implementation

* Most efficient:
union-by-rank with path compression

O o0 DN W=

e CLRS 21 A =AU{u,v)}
UNION(u, v)
* Make-Set O(|V]) return A

* Sorting edges O(|E| log|E|)

* For loop (lines 5-8)
« O((VI+ [EDa(IVD)) = O(IE|a(IV]))
* a(|V]) = 0(og|V|) = O(logl|E|)

e Also, observing |E| < |V]|?

* O(|E] log|V])

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 51




Prim’s Algorithm

* The set A forms a single tree.

* The safe edge added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

* Very similar to Kruskal’s algorithm

» Greedy > At each step, it adds to the tree an edge that contributes the minimum amount
possible to the tree’s weight.

* Growing MST

 Main difference

* The edges in the growing set A always form a single tree, i.e., instead of starting from a forest
of single-node trees, we start with an arbitrary node and grow the MST from that node by
making greedy decisions, one at a time.

* Greedy choice: At each step, we choose a “light edge” (min-weight) that connects current set
A (the growing MST) to an uncovered vertex.

v
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