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We are here!



Announcements
1. A few updates to earlier lecture notes/slides:
• Lecture 08 – Slide # 18: 

• A path in a directed/undirected graph… 

• Lecture 09 – DFS Traversal Example Slides #17-#53
• The stack representation is updated to demonstrate the exact behavior when pop operations happen.

• Lecture 09 – DFS Forest Definition and Example
• Slide # 81 added to present a more acceptable definition of DFS forest.

1. HW4 is released. Due “Saturday” 07/02

2. Algorithm visualizations (http://www.cs3510.com/resources/)

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 3

http://www.cs3510.com/resources/


Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Now, we know 
how to run BFS 
and DFS from a 
given source 
node.



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Connectivity 
problem can be 
solved by both 

BFS and DFS



Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to 

London (LHR)? 

• Flights:
• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)
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JFK

ATL

LH
R

LA
X

SFO

source

destination

• Define the corresponding 
graph

• Run BFS or DFS from the 
source node, i.e., the node 
associated with ATL

• During the traversal check 
if the destination (LHR) is a 
neighbor of the current 
node

! Demo code time!

Ex. 
1



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 
the number islands. An island includes one or more horizontally or 
vertically cells surrounded by water.
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Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

We know the nodes (= grid 
cells) and we know the 
neighbors (the relationship), 
so we can skip the graph 
definition part!

! Demo code!

Ex. 
2



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Before 
continuing with 

applications, 
let’s revisit a few 
things from BFS 

and DFS



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it 
searches the graph.

Ø We can print out the vertices on a shortest 
path from s to v, using the BFS tree

Ø We only have one distance measure 
(timestamp), denoted by d, assigned to each 
node, i.e., the time that a node visited for 
the first (and last) time.

Ø The predecessor subgraph of a depth-first 
search forms a depth-first forest 
comprising several depth-first trees. 

Ø DFS timestamps each node with two 
numbers; 
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.



Graph
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Tree traversal
• level-order

Now, we can 
continue with 

the applications
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BFS: Shortest paths
• We claimed that BFS finds the shortest distance to each reachable 

vertex in a graph G = ($, &) from a given source vertex s ∈ $.

• BFS intuition. Explore outward from s in all possible directions, 
adding nodes one “layer” at a time. 
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BFS: Shortest paths
• BFS intuition. Explore outward from s in all possible directions, 

adding nodes one “layer” at a time. 

• Theorem. For each i, Li consists of all nodes at distance exactly i from 
s. There is a path from s to t if and only if t appears in some layer. 
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BFS: Shortest paths
• BFS intuition. Explore outward from s in all possible directions, 

adding nodes one “layer” at a time. 

• Property. Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of 
G. Then, the levels of u and v differ by at most 1. 
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BFS: Shortest paths
• Property. Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of 

G. Then, the levels of u and v differ by at most 1. 
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BFS: Shortest paths
• Property. Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of 

G. Then, the levels of u and v differ by at most 1. 
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Lemma 1



BFS: Shortest paths (CLRS 22.2)

• We claimed that BFS finds the shortest distance to each reachable 
vertex in a graph G = ($, &) from a given source vertex s ∈ $.

• Define *(+, ,) shortest path distance from +↝,.
• ! ", $ = ∞ if no path from " to $.

• To prove BFS gives the shortest path to each node ., we need to show 
the distance d obtained by BFS is equal to *(+, .)
• Let’s see some proofs!
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BFS: Shortest paths
• Lemma 1

Let G = ($, &) be a directed/undirected graph, and s ∈ $ be an 
arbitrary vertex. Then, for any edge u, v ∈ &, * +, , ≤ * +, . + 1.
• Pf.
• If u is reachable from s, then so is v. In this case, the shortest path from " to $

cannot be longer than the shortest path from s to u followed by the edge u, v . 
Thus, the inequality holds. 
• If u is not reachable from s, then ! ", * = ∞, and the inequality holds. 
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BFS: Shortest paths
• Lemma 2

Let G = ($, &) be a directed/undirected graph, and BFS is run on G
from a given source s ∈ $. Then, upon termination, for each vertex 
v ∈ $ the distance d computed by BFS satisfies 5 ≥ * +, , . (d is the 
upper bound of shortest distance)
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BFS: Shortest paths
• Lemma 2

Let G = (-, .) be a directed/undirected graph, and BFS is run on G from a given 
source s ∈ -. Then, upon termination, for each vertex v ∈ - the distance d 
computed by BFS satisfies 1 ≥ ! ", $ . (d is an upper bound for shortest distance)

• Pf.
• Induction on the  number of nodes added to the queue (Enqueue operations)
• Inductive base is when we add s to the queue.

• ! = 0 ≥ % &, & and ! = ∞ ≥ % &, ) ∀ ) ∈ , − {&}.
• Inductive hypothesis: 1! ≥ ! ", $ for ∀ $ ∈ -.
• Inductive step: consider an unvisited node $ that is discovered from node *

• From hypothesis: !! ≥ % &, 0

• From BFS algorithm: !" = !! + 1 ≥ % &, 0 + 1 ⏞≥
#$%%& '

% &, )
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BFS: Shortest paths
• Lemma 3

Let G = ($, &) be a directed/undirected graph, and BFS is run on G
from a given source s ∈ $. During the execution Queue = [v4, … , v5], 
where v4 is the head and v5 is the tail. Then, 

d6! ≤ d6" + 1 and 

d6#≤ d6#$" for = = 1, 2, … , ? − 1
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BFS: Shortest paths
• Lemma 3

Let G = (-, .) be a directed/undirected graph, and BFS is run on G from a given 
source s ∈ -. During the execution Queue = [v", … , v#], where v" is the head and 
v# is the tail. Then, 

d$! ≤ d$" + 1 and 

d$#≤ d$#$" for > = 1, 2, … , @ − 1

• Pf.
• Induction on the  number of queue operations 
• Holds when the queue = [s]
• Inductive step 

• Must prove the lemma holds after both dequeuing and enqueuing a vertex.
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BFS: Shortest paths
• Lemma 3 

BFS is run on G from s ∈ -. Execution Queue = [v", … , v#], where v" is the head 
and v# is the tail. Then, d$! ≤ d$" + 1 and d$# ≤ d$#$" for > = 1, 2, … , @ − 1

• Pf.
• Induction on the  number of queue operations. Holds when the queue = [s]
• Inductive step 

1. Dequeuing: If the head v' is dequeued à v( new head 
By the inductive hypothesis: d)! ≤ d)". But then we have d)# ≤ d)! + 1 ≤ d)" +1 and the remaining inequalities remain unaffected. So, the lemma follows with v( as 
the new head:  d)# ≤ d)" + 1
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BFS: Shortest paths
• Lemma 3 

BFS is run on G from s ∈ -. Execution Queue = [v", … , v#], where v" is the head 
and v# is the tail. Then, d$! ≤ d$" + 1 and d$# ≤ d$#$" for > = 1, 2, … , @ − 1

• Pf.
• Induction on the  number of queue operations. Holds when the queue = [s]
• Inductive step 

2. Enqueuing: If we enqueue a vertex và new node as v*+' in the tail
We can assume, this enqueuing happens during exploring the neighbors of node u
which has already been removed from the queue.  
Therefore, by the inductive hypothesis: d! ≤ d)!(Note v' is the current head). Thus, 
d)#$! = d) = d, + 1 ≤ d)! + 1.
From the inductive hypothesis, we also have d)# ≤ d! + 1. So, 

d)# ≤ d! + 1 = d) = d)#$!
à Thus, the lemma follows, when v is queued.
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BFS: Shortest paths
• Lemma 3

Let G = (-, .) be a directed/undirected graph, and BFS is run on G from a given 
source s ∈ -. During the execution Queue = [v", … , v#], where v" is the head and 
v# is the tail. Then, 

d$! ≤ d$" + 1 and 
d$#≤ d$#$" for > = 1, 2, … , @ − 1

• Corollary: Suppose that vertices v% and v& are enqueued during the execution of 
BFS, and that v% is enqueued before v& . Then d$# ≤ d$% at the time that v& is 
enqueued. 
• Pf. Immediate from Lemma 3.
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths

Let G = ($, &) be a directed/undirected graph, and BFS is run on G
from a given source s ∈ $. Then, during the execution,
• BFS discovers every vertex v ∈ - that is reachable from the source s, and 
• Upon termination, 1 = ! ", $ for all v ∈ -, where d is the distance computed 

by BFS.
• Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest 

paths from s to v is a shortest path from s to C(v) followed by edge (C v , v).
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume d is not equal to the shortest distance. 
• So, let v be such a vertex, i.e., 1! ≠ ! ", $ . By Lemma 2: 1! > ! ", $ . 

Vertex v must be reachable from s. If it is not, then 1! ≱ ! ", $ = ∞.
• Let u be the vertex immediately preceding v on a shortest path from s to v, so 

that ! ", $ = ! ", * + 1. Because ! ", $ > ! ", * and according to how we 
chose v, we have 1' = ! ", * . 
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume d is not equal to the shortest distance. 
• So, let v be such a vertex, i.e., 1! ≠ ! ", $ . By Lemma 2: 1! > ! ", $ . 

Vertex v must be reachable from s. If it is not, then 1! ≱ ! ", $ = ∞.
• Let u be the vertex immediately preceding v on a shortest path from s to v, so 

that ! ", $ = ! ", * + 1. Because ! ", $ > ! ", * and according to how we 
chose v, we have 1' = ! ", * . So,

1! > ! ", $ = ! ", * + 1= 1' + 1
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume d is not equal to the shortest distance. 
• So, let v be such a vertex, i.e., 1! ≠ ! ", $ . By Lemma 2: 1! ≥ ! ", $ . 

Vertex v must be reachable from s. If it is not, then 1! ≱ ! ", $ = ∞.
• Let u be the vertex immediately preceding v on a shortest path from s to v, so 

that ! ", $ = ! ", * + 1. Because ! ", $ > ! ", * and according to how we 
chose v, we have 1' = ! ", * . So, 1! > ! ", $ = ! ", * + 1= 1' + 1
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume d is not equal to the shortest distance. 
• So, let v be such a vertex, i.e., 1! ≠ ! ", $ . By Lemma 2: 1! ≥ ! ", $ . 

Vertex v must be reachable from s. If it is not, then 1! ≱ ! ", $ = ∞.
• Let u be the vertex immediately preceding v on a shortest path from s to v, so 

that ! ", $ = ! ", * + 1. Because ! ", $ > ! ", * and according to how we 
chose v, we have 1' = ! ", * . So, 1! > ! ", $ = ! ", * + 1= 1' + 1
• Now consider the time when BFS chooses to dequeue vertex u from the queue. 

At this time, vertex v is either white (unvisited), gray (visited, but the 
neighbors are not completely explored), or black (visited and neighbors are 
completely explored). We show each of these case contradicting the obtained 
inequality.
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1
• Now consider the time when BFS chooses to dequeue vertex u from the queue.

• If v is white (unvisited) àby BFS: !" = !! + 1 Contradicting the inequality
• If v is gray (visited, but the neighbors are not completely explored), 
• If v is black (visited and neighbors are completely explored). 
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1
• Now consider the time when BFS chooses to dequeue vertex u from the queue.

• If v is white (unvisited)
• Contradicting the inequality

• If v is gray (visited, but the neighbors are not completely explored), 
• It is visited (became gray), it happened when some parent node “w” is dequeued. 
• “w” has been removed from the queue earlier than ”u”, so, (! = (" + 1.
• However, by corollary: (" ≤ (#, and so (! = (" + 1 ≤ (# + 1 Contradicting the inequality

• If v is black (visited and neighbors are completely explored). 
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1
• Now consider the time when BFS chooses to dequeue vertex u from the queue.

• If v is white (unvisited)
• Contradicting the inequality

• If v is gray (visited, but the neighbors are not completely explored), 
• Contradicting the inequality

• If v is black (visited and neighbors are completely explored). 
• It means it was already removed from the queue, and by the corollary: (! ≤ (#
• Contradicting the inequality
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1
• Now consider the time when BFS chooses to dequeue vertex u from the queue.

• Contradicting the inequality
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1 Contradiction!

• Therefore, 1! = ! ", $ for all v ∈ -
• All vertex v must be reachable from s. Otherwise, 1! = ∞ > ! ", $ .
• If C v = u, then 1!= 1'+1. Thus, we can obtain the shortest path from s to v 

by taking a shortest path from s to C v and then traversing the edge (C v , v).
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• Pf. 
• For the sake of contradiction assume 1! ≠ ! ", $ . 
• We obtained: 1! > ! ", $ = ! ", * + 1= 1' + 1 Contradiction!

• Therefore, 1! = ! ", $ for all v ∈ -
• All vertex v must be reachable from s. Otherwise, 1! = ∞ > ! ", $ .
• If C v = u, then 1!= 1'+1. Thus, we can obtain the shortest path from s to v 

by taking a shortest path from s to C v and then traversing the edge (C v , v).

• So, BFS gives the shortest path from each reachable node to the source 
node in an unweighted graph (where all edges have the same unit weight).
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BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths
• BFS gives the shortest path from each reachable node to the 

source node in an unweighted graph (where all edges have the 
same unit weight).

• Check the demo codes one more 
time for the implementations…
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Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Now, we can 
continue with 

the applications



BFS: Testing Bipartiteness
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies 
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go 
between the two sets V1 and V2. 
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BFS: Testing Bipartiteness
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies 
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go 
between the two sets V1 and V2. 

• Def. An undirected graph G = (V, E) is bipartite if the nodes can be 
colored blue or red such that every edge has one blue and one red end. 
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BFS: Testing Bipartiteness
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies 
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go 
between the two sets V1 and V2. 

• Def. An undirected graph G = (V, E) is bipartite if the nodes can be 
colored blue or red such that every edge has one blue and one red end. 
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V1

V2

bipartite graph = 2-colorable graph



BFS: Testing Bipartiteness
• Bipartite graph = 2-colorable graph
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BFS: Testing Bipartiteness
• Bipartite graph = 2-colorable graph

• Applications
• Stable matching
• Scheduling: machines = blue nodes, jobs = red nodes

• Many graph problems become:
• Easier if the underlying graph is bipartite (matching). 
• Tractable if the underlying graph is bipartite (independent set). 
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BFS: Testing Bipartiteness (KT 3.4)

• Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

• Proof. Not possible to 2-color the odd-length cycle, let alone G. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers 

produced by BFS starting at node s. Exactly one of the following 
holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-

length cycle (and hence is not bipartite). 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite.
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite). 

• Proof (1)
• Suppose no edge joins two nodes in same layer.
• By BFS property, each edge joins two nodes 

in adjacent levels. 
• Bipartition: 

• red = nodes on odd levels, 
• blue = nodes on even levels. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite).

• Proof (2)
• Suppose (x, y) is an edge with x, y in same level Lj. 
• Let z = lca(x, y) = lowest common ancestor. 
• Let L be level containing z. 
• Consider cycle that takes edge from x to y,
• then path from y to z, then path from z to x. 
• Its length is 1 + (j – i) + (j – i), which is odd. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite).

• Proof (2)
• Suppose (x, y) is an edge with x, y in same level Lj. 
• Let z = lca(x, y) = lowest common ancestor. 
• Let L be level containing z. 
• Consider cycle that takes edge from x to y,
• then path from y to z, then path from z to x. 
• Its length is 1 + (j – i) + (j – i), which is odd. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite).

• Proof (2)
• Suppose (x, y) is an edge with x, y in same level Lj. 
• Let z = lca(x, y) = lowest common ancestor. 
• Let L be level containing z. 
• Consider cycle that takes edge from x to y,
• then path from y to z, then path from z to x. 
• Its length is 1 + (j – i) + (j – i), which is odd. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite).

• Proof (2)
• Suppose (x, y) is an edge with x, y in same level Lj. 
• Let z = lca(x, y) = lowest common ancestor. 
• Let L be level containing z. 
• Consider cycle that takes edge from x to y,
• then path from y to z, then path from z to x. 
• Its length is 1 + (j – i) + (j – i), which is odd. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers produced by 

BFS starting at node s. Exactly one of the following holds:
1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and 

hence is not bipartite).

• Proof (2)
• Suppose (x, y) is an edge with x, y in same level Lj. 
• Let z = lca(x, y) = lowest common ancestor. 
• Let L be level containing z. 
• Consider cycle that takes edge from x to y,
• then path from y to z, then path from z to x. 
• Its length is 1 + (j – i) + (j – i) = 2k+1, which is odd. 
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BFS: Testing Bipartiteness
• Corollary. A graph G is bipartite iff it contains no odd-length cycle. 
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BFS: Testing Bipartiteness
• We can modify the BFS algorithm to color each neighbor with the 

opposite color when it explores a node. 

• If a neighbor has already been colored (i.e., visited), and has the same 
color, then return false. 

• If the BFS can traverse the entire graph and color all nodes, then return 
true.
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Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Now, we can 
continue with 

the applications



Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains 

no directed cycles. 

• Def. A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, ..., vn so that for every edge (vi, vj) we have i < j. 
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Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains 

no directed cycles. 

• Def. A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, ..., vn so that for every edge (vi, vj) we have i < j. 
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Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains no directed cycles. 

• Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v1, v2, ..., vn so 
that for every edge (vi, vj) we have i < j. 

• Topological Ordering à Precedence Constraints
• Precedence constraints: edge (vi, vj) means task vi must occur before vj. 

• Applications
• Course prerequisite graph: course vi must be taken before vj
• Compilation: module vi must be compiled before vj
• Pipeline of computing jobs: output of job vi needed to determine input of job vj
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering 

• Algorithm finds a topological order in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering  

• Algorithm finds a topological order in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 

• Proof by contradiction
• Suppose that G has a topological order v1, v2, ..., vn and that G also has a 

directed cycle C. Let’s see what happens. 
• Let vi be the lowest-indexed node in C and let vj be the node just before vi; thus 

(vj, vi) is an edge. 
• By our choice of i, we have i < j. 
• On the other hand, since (vj, vi) is an edge and v1, v2, ..., vn is a topological 

order, we must have j < i, a contradiction. 
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering  

• Algorithm finds a topological order in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges.  (first, we need 

this!)

• Proof by contradiction
• Suppose that G is a DAG, and every node has at least one entering edge. Let’s see 

what happens.
• Pick any node v, and begin following edges backward from v. Since v has at least 

one entering edge (u, v) we can walk backward to u. 
• Then, since u has at least one entering edge (x, u), we can walk backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between successive visits to w. C 

is a cycle. Contradiction!
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Directed Acyclic Graphs (DAG)
• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges.  (first, we need 

this!)

• Proof by contradiction
• Suppose that G is a DAG, and every node has at least one entering edge. Let’s see 

what happens.
• Pick any node v, and begin following edges backward from v. Since v has at least 

one entering edge (u, v) we can walk backward to u. 
• Then, since u has at least one entering edge (x, u), we can walk backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between successive visits to w. C 

is a cycle. Contradiction!
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Directed Acyclic Graphs (DAG)
• If G is a DAG, then G has a topological ordering. (Now, we can prove 

this!)
üIf G is a DAG, then G has a node with no entering edges   

• Proof by induction
• Base case: true if n = 1.
• Given DAG on n > 1 nodes, find a node v with no entering edges. 
• G – { v } is a DAG, since deleting v cannot create cycles.
• By inductive hypothesis, G – { v } has a topological ordering. 
• Place v first in topological ordering; then append nodes of G – { v } in 

topological order. This is valid since v has no entering edges. 
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering  

• Algorithm finds a topological order (topological sort) in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering  

• Algorithm finds a topological order (topological sort) in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• Algorithm finds a topological order in O(m + n) time 

• TOPOLOGICAL-SORT
• Call DFS to compute finishing times for each vertex v.
• As each vertex is finished, insert it onto the front of a 
linked list 

• Return the linked list of vertices 
(Output vertices in order of decreasing finish times) 

• Intuition:
• Ensures if (u,v) ∈ E, then f[v] < f[u]
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Directed Acyclic Graphs (DAG)
• Algorithm finds a topological order in O(m + n) time 

• TOPOLOGICAL-SORT
• Call DFS to compute finishing times for each vertex v.
• As each vertex is finished, insert it onto the front of a 
linked list 

• Return the linked list of vertices 

• Pf. (CLRS, Theorem 22.12)
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Directed Acyclic Graphs (DAG)
• Algorithm finds a topological order in O(m + n) time 

• TOPOLOGICAL-SORT
• Call DFS to compute finishing times for each vertex v.
• As each vertex is finished, insert it onto the front of a 
linked list 

• Return the linked list of vertices 

• Pf. (CLRS, Theorem 22.12)

• Note topological ordering can also be obtained using “Kahn's algorithm”, which 
is BFS approach starting from a node with no entering edge, in O(m + n) time.
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Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Now, we can 
continue with 

the applications



Strongly Connected Component (SCC)
• Problem: Decomposing a directed graph into its strongly connected 

components 

• A classic application of DFS.
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• The strongly connected components of a directed graph are the equivalence
classes of vertices under the “are mutually reachable” relation.

• Given directed graph G=(V, E) an SCC is a maximal set of vertices C ⊆ V
such that for every pair of vertices u and v in C , we have both u↝v and v↝u;
that is, vertices u and v are reachable from each other.

• A directed graph is strongly connected if it has only one strongly connected
component.



Strongly Connected Component (SCC)
• Linear-time (Θ(|$| + |&|)) algorithm to compute the strongly 

connected components of a directed graph G = ($, &) using two 
depth-first searches, one on G and one on G<.

• G< = ($, &=), where &= = ., , ,, . ∈ &
In other words, same graph except all edges are reversed.

• Adjacency list representation: C= can be obtained in O(|$| + |&|)
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Strongly Connected Component (SCC)
• Linear-time (Θ(|$| + |&|)) algorithm to compute the strongly 

connected components of a directed graph G = ($, &) using two 
depth-first searches, one on G and one on G<.

• G< = ($, &=), where &= = ., , ,, . ∈ &
In other words, same graph except all edges are reversed.

• Adjacency list representation: C= can be obtained in O(|$| + |&|)

• Observation: G and G< have the same SCC’s. (u and v are reachable 
from each other in G if and only if reachable from each other in G<.) 
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Strongly Connected Component (SCC)
• Linear-time (Θ(|$| + |&|)) algorithm to compute the strongly 

connected components of a directed graph G = ($, &) using two 
depth-first searches, one on G and one on G<.
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STRONGLY-CONNECTED-COMPONENTS (G)
1.Call DFS(G) to compute finishing times for each vertex u (u.f)
2.Compute GT
3.Call DFS(GT) but in the main loop of DFS, consider the vertices 

in order of decreasing u.f (as computed in line 1)
4.Output the vertices of each tree in the depth-first forest 

formed in line 3 as a separate strongly connected component 



Strongly Connected Component (SCC)
• Linear-time (Θ(|$| + |&|)) algorithm to compute the strongly 

connected components of a directed graph G = ($, &) using two 
depth-first searches, one on G and one on G<.
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STRONGLY-CONNECTED-COMPONENTS (G)
1.Call DFS(G) to compute finishing times for each vertex u (u.f)
2.Compute GT
3.Call DFS(GT) but in the main loop of DFS, consider the vertices 

in order of decreasing u.f (as computed in line 1)
4.Output the vertices of each tree in the depth-first forest 

formed in line 3 as a separate strongly connected component 

Why does this algorithm work?



Strongly Connected Component (SCC)

• Considering vertices in second DFS in decreasing order of finishing 
times from first DFS means we are visiting vertices of the component 
graph in topological sort order. 

• Lemma 1
Let C and C′ be distinct SCCs in G = (V, E). 
Suppose there is an edge (u, v) ∈ E such that 
u ∈ C and v ∈ C′. Then f(C)  >  f(C′).
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STRONGLY-CONNECTED-COMPONENTS (G)
1. DFS(G) to compute f(u)
2. Compute GT
3. Call DFS(GT) in the order of decreasing f(u) (topology ordering of G)
4. Each tree in the depth-first forest formed in line 3 is a strongly connected component 



Strongly Connected Component (SCC)

• Lemma
Let C and C′ be distinct SCCs in G = (V, E). 
Suppose there is an edge (u, v) ∈ E such that 
u ∈ C and v ∈ C′. Then f(C)  >  f(C′).

• Corollary-1 Suppose there is an edge (u,v) ∈ ET, where u ∈ C and v ∈
C′. Then f(C) <  f(C′).

• Corollary-2 Suppose f(C)  >  f(C′). Then, there  cannot be an edge from 
C′ to C in GT.
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STRONGLY-CONNECTED-COMPONENTS (G)
1. DFS(G) to compute f(u)
2. Compute GT
3. Call DFS(GT) in the order of decreasing f(u) (topology ordering of G)
4. Each tree in the depth-first forest formed in line 3 is a strongly connected component 



Strongly Connected Component (SCC)
• When we start the second DFS on GT:

• We begin with SCC C such that f(C) is maximum.
• So, the second DFS starts from some x ∈ C, which visits all C vertices. 
• Corollary-2 says that since f(C) > f(C′) for all C′ ≠ C, there are no edges from C to C′ in GT. 

Therefore, the second DFS only visits vertices in C, i.e., the depth-first tree rooted at x contains 
exactly the vertices of C. 

• The next root chosen in the second DFS is in SCC C′ such that f (C′) is maximum 
over all SCCs other than C. DFS visits all vertices in C′, but the only edges out of C′ 
go to C, which we have already visited. Therefore, the only tree edges will be to 
vertices in C′.

• We can continue the process. Each time we choose a root based on the topological 
order, where we have only edges to the current SCC nodes (and the earlier ones but 
they are already visited), and there is no edge to the next SCC (Corollary-2); 
therefore, the DFS only visits the current SCC nodes.
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Strongly Connected Component (SCC)
• Ex.
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• A directed graph G. 
• Each shaded region is a strongly connected 

component of G. 
• Each vertex is labeled with its discovery and 

finishing times in a depth-first search, and 
tree edges are shaded. 

• The graph GT, the transpose of G, with the depth-
first forest computed in line 3 of STRONGLY-
CONNECTED-COMPONENTS shown and tree 
edges shaded.

• Each strongly connected component corresponds 
to one depth-first tree. 

• Vertices b, c, g, and h, which are heavily shaded, 
are the roots of the depth-first trees produced by 
the depth-first search of GT. 



Strongly Connected Component (SCC)
• Ex.

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 82

The acyclic component graph
GSCC obtained by contracting all
edges within each strongly
connected component of G so
that only a single vertex remains
in each component.



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm
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