# CS-3510: <br> Design and Analysis of Algorithms 

## Graph Algorithms: Traversal Applications I

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

## Roadmap



## Graph

## - Graph definition and representation

- Adjacency matrix
- Adjacency list


## - Graph traversal

- Breadth first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm


## Graph

- Review of graph definition and representation
- Adjacency matrix
- Adjacency list
- Graph traversal
- Breadth first search (BFS)
- Depth first search (DFS)


## Graph Properties and Terminology Review

```
1 # adjacency matrix:
3 graph1 = [
        [0, 1, 0, 0],
        [0, 0, 1, 1],
        [0, 0, 0, 0],
        [0, 0, 0, 0]
8]
graph2 = [
    [0, 10, 0, 0],
        [0, 0, 15, 20],
        [0, 0, 0, 0],
        [0, 0, 25, 0]
15 ]
graph3 = [
    [0, 1, 0, 0],
    [1, 0, 1, 1],
    [1, 0, 1, 1],
    [0, 1 ,1, 0]
22 ]
graph4 = [
    [ 0, 10, 0, 0],
    [10, 0, 15, 20]
    [ 0, 15, 0, 25]
    [0, 20, 25, 0]
```

    2: [1, 3], Directed
    ```
# adjacency list --> dictionary/hashmap
```


# adjacency list --> dictionary/hashmap

lug}\begin{array}{l}{2}<br>{4}

```
lug}\begin{array}{l}{2}\\{4}
```




```
lug}\begin{array}{l}{2}\\{4}
```

lug}$$
\begin{array}{l}{2}\\{4}
lug}\begin{array}{l}{2}\\{4}
lug}\begin{array}{l}{2}\\{3}\end{array}\mp@code{graph1 = {
lug}\begin{array}{l}{2}\\{3}\end{array}
$$\mp@code{graph1 = {
lug}\begin{array}{l}{2}<br>{4}

```
lug}\begin{array}{l}{2}\\{4}
```




## Demo code time! <br> Demo code time!



Graph-1

Directed
Weighted


Graph-2


Graph-3


Graph-4

## Graph Definition: Summary

- Two common ways to represent graphs
- Adjacency matrix
- Adjacency list
- Adjacency matrix
- Space: $\mathrm{n}^{2}$ elements for n vertices
- Easy to check if a link exists between two vertices
- Adjacency list
- More common representation: most large real-world graphs are sparse
- Space: Number of edges [2*(number of edges) if undirected] + number of vertices, i.e., $(\mathrm{m}+\mathrm{n})$ or $(2 \mathrm{~m}+\mathrm{n})$
- Linked list implementation is typically used


## Graph

- Graph definition and representation
- Adjacency matrix
- Adjacency list


## - Graph traversal

- Breadth first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm


## Graph Traversal

## - Connectivity and Traversal

- s-t connectivity problem. Given two nodes $s$ and $t$, is there a path between $s$ and $t$ ? (is t reachable from s?)
- s-t shortest path problem. Given two nodes $s$ and $t$, what is the length of a shortest path between $s$ and $t$ ?
- [Strongly] connected component is a set of vertices all reachable from each other (mutually reachable)
- Connected component problem. Find all nodes reachable from $s$.
- Applications
- Facebook, mutual friends
- Maze traversal
- Fewest hops in a communication network


## Graph Traversal

- Traversal $=$ Exploring $=$ Searching
- A graph needs to be traversed in order to determine some properties
- Breadth-first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth-first search (DFS)
- Topological sorting

|  | Implementation | Data Structure |
| :--- | :--- | :--- |
| BFS | $\underline{\text { Iterative }}$ | $\underline{\text { Queue (FIFO) }}$ |
| DFS | $\underline{\text { Recursive }}$ | (not explicitly required $\rightarrow$ <br> execution stack) |
|  | $\underline{\text { Iterative }}$ | $\underline{\text { Stack (LIFO) }}$ |

- Tree traversal (in-order, pre-order, post-order)
- Connected components


## Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex $u$, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v

$\operatorname{BFS}(G, s)$

```
for each vertex \(u \in G . V-\{s\}\)
    u.color \(=\) wHITE \(\quad\) white \(:=\) unvisited node
    \(u . d=\infty \quad\) distance from source
    \(u . \pi=\) NIL parent
s.color \(=\) GRAY
s. \(d=0\)
\(s . \pi=\) NIL
\(Q=\emptyset\)
ENQUEUE \((Q, s)\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{DEQUEUE}(Q)\)
    for each \(v \in G . \operatorname{Adj}[u]\)
        if \(v\). color \(==\) WHITE
            v.color \(=\) GRAY
            v. \(d=u . d+1\)
            \(v . \pi=u\)
            EnQueue \((Q, v)\)
    u.color \(=\) BLACK
```


## Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " $s$ "
- At each vertex u, all neighbors, i.e., vertices $v$ adjacent to $u$ are visited before moving on to vertices adjacent to some $v$
- Queue = \{ $\}$
- Visited $=\{ \}$



## Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex $u$, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some $v$
- Queue = \{ $\}$
- Visited $=\{ \}$


Demo code time!

## Graph Traversal: BFS

- BFS runs in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time
- The worst case is when the graph is connected.
- Each vertex is added to the queue and removed from it exactly once
- Each adjacency list is used exactly once


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path.
- No explicit storage of vertices is required (BFS needs a queue)
- However, calls for each vertex build up on the execution stack (recursive implementation)
- An iterative implementation is possible using an explicit stack data structure.
- Traversal = Exploring = Searching (visiting vertices one-by-one)


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path.
- Traversal = Exploring = Searching (visiting vertices one-by-one)
- Analogy:

Exploring a maze:

"Visited" set $\rightarrow$ A piece of chalk
"Stack" $\rightarrow$ ball of string


Push: unwind the string to try new path Pop: rewind the string to return to previous junction

## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path


DFS( $G$ )
for each vertex $u \in G . V$
u.color $=$ WHITE
u. $\pi=$ NIL
time $=0$
for each vertex $u \in G . V$
if $u$. color $==$ WHITE
$\operatorname{DFS}-\operatorname{ViSIT}(G, u)$

6
7
$\operatorname{DFS}-\operatorname{ViSIT}(G, u)$
time $=$ time $+1 \quad / /$ white vertex $u$ has just been discovered
u.d $=$ time
u.color $=$ GRAY
for each $v \in G . \operatorname{Adj}[u] \quad / /$ explore edge $(u, v)$
if $v$.color $==$ WHITE
$\nu . \pi=u$
$\operatorname{DFS}-\operatorname{VISIT}(G, \nu)$
u.color $=$ BLACK $/ /$ blacken $u$; it is finished
time $=$ time +1
10 u.f $=$ time

## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}\}$
- Visited $=\{A\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Visited $=\{A, B\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C\}$
discovery | finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
- Visited $=\{A, B, C, D\}$
discovery | finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}\}$
- Visited $=\{A, B, C, D, E\}$
discovery | finishing time


31

## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, G, F $\}$
- Visited $=\{$ A, B, C, D, E, G $\}$
p) discovery $\mid$ finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, G, F $\}$
- Visited $=\{A, B, C, D, E, G, F\}$
discovery | finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathbf{\mathrm { X }}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack
discovery \| finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, $\mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack
discovery | finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop

- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \boldsymbol{X}, \boldsymbol{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore $\rightarrow$ backtrack


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop

- Stack $=\{A, B, C$, , $\boldsymbol{X}, \mathbf{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore $\rightarrow$ backtrack
discovery | finishing time



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{/ P o p}, \mathbf{P}, \mathbf{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\left\{A, \frac{\text { Pop }}{\text { Po }}, \mathbf{X}, \mathbf{X}\right\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path


## Pop

- Stack $=\{\boldsymbol{x}, \mathbf{x}, \boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack
- No more element in the stack $\rightarrow$ Halt



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!
- $\rightarrow$ Consider the same example, with minor difference:



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}\}$
- Visited $=\{\mathrm{A}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}\}$
- Visited $=\{\mathrm{A}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Visited $=\{\mathrm{A}, \mathrm{B}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
/ Pop
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathbf{又}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore $\rightarrow$ backtrack


3|4

## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$

Pop

- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{X}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore $\rightarrow$ backtrack

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{A, B, \mathbf{X}, \mathrm{E}\}$
- Visited $=\{A, B, C, D\}$

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{A, B, \mathbf{X}, \mathrm{E}, \mathrm{G}\}$
- Visited $=\{A, B, C, D, E\}$

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{A, B, \mathcal{C}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G $\}$

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{A, B, \mathcal{X}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
- Stack $=\{A, B, \mathcal{C}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack

| 4


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$

- Stack $=\{A, B, \mathbf{X}, \mathrm{E}, \mathrm{G}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack

$3 \mid 4$


## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
/ Pop
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{X}, \mathbf{X}, \mathrm{E}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$

- Stack $=\{A, B, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$

- Stack $=\{A, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore $\rightarrow$ backtrack



## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference $\rightarrow$
/ Pop
- Stack $=\{\boldsymbol{x}, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$

Nothing left to explore $\rightarrow$ empty stack $\rightarrow$ Halt All nodes are visited, and we reach to the root


## Graph Traversal: DFS

## CLRS DFS(G)

for each vertex $u \in G . V$
u.color $=$ WHITE
$u . \pi=$ NIL
time $=0$
for each vertex $u \in G . V$
if $u$.color $==$ WHITE
DFS-Visit $(G, u)$
7

DFS-Visit $(G, u)$
time $=$ time +1
2 u.d = time
u.color $=$ GRAY

4 for each $v \in G . \operatorname{Adj}[u]$
if $v$.color $==$ WHITE
$\nu . \pi=u$
$\operatorname{DFS}-\operatorname{ViSIT}(G, \nu)$
u.color $=$ BLACK
time $=$ time +1
u. $f=$ time

```
procedure dfs(G)
procedure dfs (G)
```

for all $v \in V$ :
visited $(v)=$ false

```
for all v\inV:
```

    if not visited \((v)\) : explore (v)
    procedure explore $(G, v)$
Input: $G=(V, E)$ is a graph; $v \in V$
Output: visited(u) is set to true for all nodes $u$ reachable
from $v$
visited $(v)=$ true
previsit(v)
for each edge $(v, u) \in E$ :
if not visited(u): explore(u)
postvisit(v)

## Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path


Graph-2
Demo code time!

## Graph Traversal: DFS

- DFS also runs in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time
- DFS is called exactly once per vertex
- Each adjacency list is used exactly once

|  | Implementation | Data Structure | Running Time | Space Complexity |
| :---: | :---: | :---: | :---: | :---: |
| BFS | Iterative | Queue (FIFO) | $\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{E}\|)$ | $\mathrm{O}(\|\mathrm{V}\|)$ |
| DFS | Recursive | (not explicitly required $\rightarrow$ execution stack) | $\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{E}\|)$ | $\mathrm{O}(\|\mathrm{V}\|)$ |
|  | Iterative | Stack (LIFO) |  |  |

## Graph

- Graph definition and representation
- Adjacency matrix
- Adjacency list
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm
- Topological sorting

Now, we know how to run BFS and DFS from a given source node.

- Depth first search (DFS)
- Tree traversal (in-order, pre-order, post-order)
- Connected components


## Graph



## Graph



## Graph Traversal: Connected Component

- Connected component problem. Find all nodes reachable from $s$.

```
R will consist of nodes to which s has a path
Initially }R={s
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to }
Endwhile
```


it's safe to add v

- Upon termination, $R$ is the connected component containing $s$.
- BFS
- DFS


## Graph Traversal: Connected Component

- Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to London (LHR)?
- Flights:
- (JFK, ATL)
- (ATL, LAX)
- (LAX, SFO)
- (JFK, SFO)
- (SFO, JFK)
-(JFK, LHR)


## Graph Traversal: Connected Component

- Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to London (LHR)?
- Flights:
- (JFK, ATL)
- (ATL, LAX)
- (LAX, SFO)
- (JFK, SFO)
- (SFO, JFK)
-(JFK, LHR)



## Graph Traversal: Connected Component

- Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to London (LHR)?
- Flights:
- (JFK, ATL)
- (ATL, LAX)
- (LAX, SFO)
- (JFK, SFO)
- (SFO, JFK)
-(JFK, LHR)

- Define the corresponding graph
- Run BFS or DFS from the source node, i.e., the node associated with ATL
- During the traversal check if the destination (LHR) is a neighbor of the current node


## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.

| 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |


| 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |

## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.

| 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |



## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.

| 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |

Each cell = graph node


## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.

| 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |



## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water. So, we can define the corresponding graph, then run BFS or DFS from each grid cell with the value of 1 , i.e., $\operatorname{grid}[i][j]=1$ and mark visited nodes. Number of islands is equal to the number of times we

Each cell = graph node need to start a search


Neighbors of grid[i][j]:

- grid[i-1][j]
- grid[i+1][j]
- $\operatorname{grid}[i][j-1]$
- $\operatorname{grid}[i][j+1]$


## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water. But do we need to define the corresponding graph explicitly? (by defining the adjacency matrix or adjacency list?)



## Graph Traversal: Connected Component

- Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.
We know the nodes (= grid cells) and we know the neighbors (the relationship), definition part!



## Graph



## BFS and DFS

- Both are graph traversal algorithms



## BFS and DFS

- Both are graph traversal algorithms

| BFS | DFS |
| :--- | :--- |
| Iterative: Queue (FIFO), | Recursive: (execution stack), Iterative: Stack(LIFO) |
| Time: $\mathrm{O}(\|\mathrm{VI}+\| \mathrm{EI})$, Space: $\mathrm{O}(\mathrm{IVI})$ | Time:O(IVI+\|E|), Space: O(IVI) |
| BFS builds a breadth-first tree as it searches the graph. |  |
| Formally, given graph $\mathrm{G}=(V, E)$ with source s, we |  |
| define the predecessor subgraph of G as $\mathrm{G}_{\pi}=$ |  |
| $\left(V_{\pi}, E_{\pi}\right)$ where |  |
| $V_{\pi}=\{v \in V: v . \pi \neq \mathrm{NIL}\} \cup\{s\}$ |  |
| $E_{\pi}=\left\{(v \cdot \pi, v): v \in V_{\pi}-\{s\}\right\}$ (tree edges $)$ |  |
| When applied to a directed or undirected graph |  |
| $\mathrm{G}=(V, E), \mathrm{BFS}$ constructs $\pi$ so that the predecessor |  |
| subgraph $\mathrm{G}_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ is a breadth-first tree. |  |

## BFS and DFS

- Both are graph traversal algorithms

| BFS | DFS |
| :---: | :---: |
| Iterative: Queue (FIFO), | Recursive: (execution stack), Iterative: Stack(LIFO) |
| Time: $\mathrm{O}(\mathrm{IVI}+\mathrm{IEI})$, $\underline{\text { Space: }} \mathrm{O}(\mathrm{IVI})$ | Time: $\mathrm{O}(\|\mathrm{VI}+\| \mathrm{El})$, Space: $\mathrm{O}(\mathrm{IVI})$ |
| BFS builds a breadth-first tree as it searches the graph. |  |
| Formally, given graph $\mathrm{G}=(V, E)$ with source s , we define the predecessor subgraph of G as $\mathrm{G}_{\pi}=$ ( $V_{\pi}, E_{\pi}$ ) where |  |
| ( $V_{\pi}, E_{\pi}$ ) where $V_{\pi}=\{v \in V: v \cdot \pi \neq \mathrm{NIL}\} \cup\{s\}$ |  |
| $E_{\pi}=\left\{(v . \pi, v): v \in V_{\pi}-\{s\}\right\}$ (tree edges) |  |
| When applied to a directed or undirected graph $\mathrm{G}=(V, E), \mathrm{BFS}$ constructs $\pi$ so that the predecessor subgraph $\mathrm{G}_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ is a breadth-first tree. |  |

## BFS and DFS

- Both are graph traversal algorithms



## BFS and DFS

- Both are graph traversal algorithms

| BFS | DFS |
| :---: | :---: |
| Iterative: Queue (FIFO), <br> Time: $\mathrm{O}(\|\mathrm{VI}+\| \mathrm{EI})$, Space: $\mathrm{O}(\mathrm{IVI})$ | Recursive: (execution stack), Iterative: Stack(LIFO) Time: $\mathrm{O}(\|\mathrm{VI}+\| \mathrm{El\mid})$, Space: $\mathrm{O}(\mid \mathrm{VI})$ |
| BFS builds a breadth-first tree as it searches the graph. |  |
| 2.) CS-3510: Design and Analysis of Algorithms I Sumi | 202 |

## BFS and DFS

- Both are graph traversal algorithms

| BFS | DFS |
| :---: | :---: |
| Iterative: Queue (FIFO), | Recursive: (execution stack), Iterative: Stack(LIFO) |
| Time: $\mathrm{O}(\mathrm{IVI}+\mathrm{IEI})$, $\underline{\text { Space: }} \mathrm{O}(\mathrm{IVI})$ | Time: $\mathrm{O}(\mathrm{IVI}+\mid \mathrm{El})$, Space: $\mathrm{O}(\mathrm{IVI})$ |
| BFS builds a breadth-first tree as it searches the graph. |  |
| Printing out the vertices on a shortest path from s to v , using the BFS tree |  |
| Print-Path ( $G, s, v$ ) |  |
| 1 if $v==s$ |  |
| 2 print $s$ |  |
| 3 elseif $v . \pi==$ NIL |  |
| 4 print "no path from" $s$ "to" $v$ "exists" |  |
| 5 else Print-Path ( $G, s, \nu . \pi$ ) |  |
| 6 print $v$ |  |

## BFS and DFS

- Both are graph traversal algorithms



## DFS Forest Example


$3 \mid 4$

## DFS Forest Example



## DFS Forest Example



## BFS and DFS

- Both are graph traversal algorithms

| BFS | DFS |
| :---: | :---: |
| Iterative: Queue (FIFO), | Recursive: (execution stack), Iterative: Stack(LIFO) |
| Time: $\mathrm{O}(\|\mathrm{VI}+\| \mathrm{El})$, Space: $\mathrm{O}(\mathrm{IVI})$ | Time: $\mathrm{O}(\mathrm{IVI}+\mid \mathrm{El})$, Space: $\mathrm{O}(\mid \mathrm{VI})$ |
| BFS builds a breadth-first tree as it searches the graph. | The timestamps have parenthesis structure: In any DFS on graph $G=(V, E)$, for any two vertices $u$ and $v$, exactly one of the following can |
| $>$ We can print out the vertices on a shortest path from s to $v$, using the BFS tree | happen: |
|  | 1. [u.d, u.f] and [v.d, v.f] are disjoint |
| We only have one distance measure (timestamp), denoted by d, assigned to each node, i.e., the time that a node visited for the first (and last) time. | 2. The interval [u.d, u.f] is contained entirely within the interval [v.d, v.f] <br> 3. The interval [v.d, v.f] is contained entirely within the interval [u.d, u.f] |

## DFS: Timestamps Parenthesis Structure

- The timestamps have parenthesis structure:
- In any DFS on graph $G=(V, E)$, for any two vertices $u$ and $v$, exactly one of the following can happen:

1. The intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, and neither unor v is a descendant of the other in the depth-first forest.
2. The interval [u.d, u.f] is contained entirely within the interval [v.d, v.f], and $u$ is a descendant of $v$ in a depth-first tree.
3. The interval [v.d, v.f] is contained entirely within the interval [u.d, u.f], and $v$ is a descendant of $u$ in a depth-first tree.

## DFS Parenthesis Structure Example



## DFS Parenthesis Structure Example



## BFS and DFS

- Both are graph traversal algorithms



## Graph



## References

- The lecture slides are mainly based on the suggested textbooks and the corresponding published lecture notes:
- CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., \& Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- KT: Kleinberg, J., \& Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
- DPV: Dasgupta, S., Papadimitriou, C. H., \& Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
- Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

