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We are here!



Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph
• Review of graph definition and representation
• Adjacency matrix

• Adjacency list

•Graph traversal
• Breadth first search (BFS)

• Depth first search (DFS)
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Graph Properties and Terminology Review
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Graph Definition: Summary
• Two common ways to represent graphs

• Adjacency matrix
• Adjacency list 

• Adjacency matrix

• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list

• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of 

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used
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Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph Traversal
•Connectivity and Traversal
• s-t connectivity problem. Given two nodes s and t, is there a path between s and t ?

(is t reachable from s?)

• s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path
between s and t ?
• [Strongly] connected component is a set of vertices all reachable from each other 

(mutually reachable)
• Connected component problem. Find all nodes reachable from s. 

• Applications
• Facebook, mutual friends
• Maze traversal
• Fewest hops in a communication network
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Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties 

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)



Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 
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Graph Traversal: BFS
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {}

• Visited = {}
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! Demo code time!



Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time 

• The worst case is when the graph is connected.

• Each vertex is added to the queue and removed from it exactly once 
• Each adjacency list is used exactly once
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Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path. 

• No explicit storage of vertices is required (BFS needs a queue)

• However, calls for each vertex build up on the execution stack 

(recursive implementation)

• An iterative implementation is possible using an explicit stack data 

structure.

• Traversal = Exploring = Searching

(visiting vertices one-by-one)
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Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path. 

• Traversal = Exploring = Searching

(visiting vertices one-by-one)

• Analogy:

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 15

Exploring a maze:
“Visited” set à A piece of chalk
“Stack” à ball of string

Push: unwind the string to try new path
Pop: rewind the string to return to previous junction



Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A}

• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B}

• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B}

• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C}

• Visited = {A, B}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D}

• Visited = {A, B, C}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E}

• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G}

• Visited = {A, B, C, D, E}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 31

A

E

B

C

D
G

F

discovery | finishing time

0 | 

1| 12

2| 11

3 |10 

4 |9 

6 |7 

5 |8 

Pop



Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

• No more element in the stack à Halt

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 32

A

E

B

C

D
G

F

discovery | finishing time

0 |13 

1| 12

2| 11

3 |10 

4 |9 

6 |7 

5 |8 

• DFS follows a single path as far (deep) 

as possible and then backtracks to 
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• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Note in this example we were able to 

reach all nodes without any backtracking.

But this is not usually the case in many 

examples!
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Note in this example we were able to 

reach all nodes without any backtracking.

But this is not usually the case in many 

examples!

•à Consider the same example, with

minor difference:
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A}

• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 36

A

E

B

C

D
G

F

discovery | finishing time



Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B}

• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C}

• Visited = {A, B}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E}

• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G}

• Visited = {A, B, C, D, E}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 

the last alternative path 

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

Nothing left to explore à empty stackà Halt
All nodes are visited, and we reach to the root
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Graph Traversal: DFS
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Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path 
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Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time 

• DFS is called exactly once per vertex

• Each adjacency list is used exactly once
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Implementation Data Structure Running Time Space Complexity

BFS Iterative Queue (FIFO) O(|V| + |E|) O(|V|)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|) O(|V|)



Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Now, we know 
how to run BFS 
and DFS from a 
given source 
node.



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Connectivity 
problem can be 
solved by both 

BFS and DFS



Graph Traversal: Connected Component
• Connected component problem. Find all nodes reachable from s. 

• Upon termination, R is the connected component containing s. 

• BFS 
• DFS
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Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to 

London (LHR)? 

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)
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Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to 

London (LHR)? 

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)
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JFK

ATL

LHR

LAX

SFO

source

destination



Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to 

London (LHR)? 

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)
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JFK

ATL

LH
R

LA
X

SFO

source

destination

• Define the corresponding 
graph

• Run BFS or DFS from the 
source node, i.e., the node 
associated with ATL

• During the traversal check 
if the destination (LHR) is a 
neighbor of the current 
node

! Demo code time!



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 64

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

grid = 



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

grid = 

Each cell = graph node



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

So, we can define the 
corresponding graph, then 
run BFS or DFS from each 
grid cell with the value of 1, 
i.e., grid[i][j]=1 and mark 
visited nodes.
Number of islands is equal 
to the number of times we 
need to start a search 



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

But do we need to define 
the corresponding graph 
explicitly? (by defining the 
adjacency matrix or 
adjacency list?)



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 

the number islands. An island includes one or more horizontally or 

vertically cells surrounded by water.
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Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

We know the nodes (= grid 
cells) and we know the 
neighbors (the relationship), 
so we can skip the graph 
definition part!

! Demo code!



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Before 
continuing with 

applications, 
let’s revisit a few 
things from BFS 

and DFS



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

Formally, given graph G = ($, &) with source s, we 
define the predecessor subgraph of G as G! =
($!, &!) where 
$! = ) ∈ $: ). - ≠ NIL ∪ {4}
&! = ). -, ) : ) ∈ $! − {4} (tree edges)

When applied to a directed or undirected graph 
G = ($, &), BFS constructs - so that the predecessor 
subgraph G! = ($!, &!) is a breadth-first tree. 



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

Formally, given graph G = ($, &) with source s, we 
define the predecessor subgraph of G as G! =
($!, &!) where 
$! = ) ∈ $: ). - ≠ NIL ∪ {4}
&! = ). -, ) : ) ∈ $! − {4} (tree edges)

When applied to a directed or undirected graph 
G = ($, &), BFS constructs - so that the predecessor 
subgraph G! = ($!, &!) is a breadth-first tree. 



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

A

E
B

C
D

G

F

Source:

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

A

E
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C
D

G

F

Source:

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.
Printing out the vertices on a shortest path from s to v, 
using the BFS tree



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it searches the 
graph.

Ø We can print out the vertices on a shortest path 
from s to v, using the BFS tree

Ø We only have one distance measure (timestamp), 
denoted by d, assigned to each node, i.e., the time 
that a node visited for the first (and last) time.

The predecessor subgraph produced by a DFS may be 
composed of several trees, because the search may 
repeat from multiple sources. 

The predecessor subgraph of a depth-first search forms 
a depth-first forest comprising several depth-first trees. 

DFS timestamps each node with two numbers; 
d (discovery time): the first time we visit the node and 
f (finishing time): the last time we visit the node (after 
exploring all possible paths followed the node)



DFS Forest Example
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A
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D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9
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DFS Forest Example
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discovery | finishing time

0 |13
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2 | 5

3 | 4
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7 | 10

8 | 9
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6 |11

7 | 10

8 | 9



DFS Forest Example

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 81

More accepted definition of DFS Forest

Number of times DFS-Visit(G, u) is called = Number of trees 



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it 
searches the graph.

Ø We can print out the vertices on a shortest 
path from s to v, using the BFS tree

Ø We only have one distance measure 
(timestamp), denoted by d, assigned to each 
node, i.e., the time that a node visited for 
the first (and last) time.

The timestamps have parenthesis structure:
In any DFS on graph G = #, % , for any two 
vertices u and v, exactly one of the following can 
happen:

1. [u. d, u. f] and [v. d, v. f] are disjoint
2. The interval [u. d, u. f] is contained entirely 

within the interval [v. d, v. f]
3. The interval [v. d, v. f] is contained entirely 

within the interval [u. d, u. f]



DFS: Timestamps Parenthesis Structure
• The timestamps have parenthesis structure:
• In any DFS on graph G = #, % , for any two vertices u and v, exactly 

one of the following can happen:

1. The intervals [u. d, u. f] and [v. d, v. f] are entirely disjoint, and neither u nor v
is a descendant of the other in the depth-first forest.

2. The interval [u. d, u. f] is contained entirely within the interval [v. d, v. f], and 
u is a descendant of v in a depth-first tree.

3. The interval [v. d, v. f] is contained entirely within the interval [u. d, u. f] , and 
v is a descendant of u in a depth-first tree. 
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DFS Parenthesis Structure Example
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DFS Parenthesis Structure Example
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A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

0 |13A

B 1 |12

0 13

C 2 | 5

D 3 | 4

1

2

3 4

5

12



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it 
searches the graph.

Ø We can print out the vertices on a shortest 
path from s to v, using the BFS tree

Ø We only have one distance measure 
(timestamp), denoted by d, assigned to each 
node, i.e., the time that a node visited for 
the first (and last) time.

Ø The predecessor subgraph of a depth-first 
search forms a depth-first forest 
comprising several depth-first trees. 

Ø DFS timestamps each node with two 
numbers; 
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Now, we can 
continue with 

the applications
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