
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Graph Algorithms:
Traversal Applications I

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Review of graph definition and representation
• Adjacency matrix

• Adjacency list

•Graph traversal
• Breadth first search (BFS)

• Depth first search (DFS)

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Graph Properties and Terminology Review

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

! Demo code time!

Graph-1

Graph-2

Graph-3

Graph-4

Graph Definition: Summary
• Two common ways to represent graphs

• Adjacency matrix
• Adjacency list

• Adjacency matrix

• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list

• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph Traversal
•Connectivity and Traversal
• s-t connectivity problem. Given two nodes s and t, is there a path between s and t ?

(is t reachable from s?)

• s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path
between s and t ?
• [Strongly] connected component is a set of vertices all reachable from each other

(mutually reachable)
• Connected component problem. Find all nodes reachable from s.

• Applications
• Facebook, mutual friends
• Maze traversal
• Fewest hops in a communication network

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

A

E
B

C
D

G

F

distance from source
parent

white := unvisited node

gray := visited node

black := visited & all
unvisited neighbors
added to the queue

Graph Traversal: BFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {}

• Visited = {}

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

A

E

B

C

D
G

F

Source: “s”

! Demo code time!

Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time

• The worst case is when the graph is connected.

• Each vertex is added to the queue and removed from it exactly once
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path.

• No explicit storage of vertices is required (BFS needs a queue)

• However, calls for each vertex build up on the execution stack

(recursive implementation)

• An iterative implementation is possible using an explicit stack data

structure.

• Traversal = Exploring = Searching

(visiting vertices one-by-one)

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path.

• Traversal = Exploring = Searching

(visiting vertices one-by-one)

• Analogy:

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Exploring a maze:
“Visited” set à A piece of chalk
“Stack” à ball of string

Push: unwind the string to try new path
Pop: rewind the string to return to previous junction

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

A

E
B

C

D
G

F

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

A

E

B

C

D
G

F

discovery | finishing time

0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

A

E

B

C

D
G

F

discovery | finishing time

0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C}

• Visited = {A, B}

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D}

• Visited = {A, B, C}

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E}

• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G}

• Visited = {A, B, C, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

5 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |

5 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |7

5 |

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2| 11

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

A

E

B

C

D
G

F

discovery | finishing time

0 |

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

• No more element in the stack à Halt

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Note in this example we were able to

reach all nodes without any backtracking.

But this is not usually the case in many

examples!

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Note in this example we were able to

reach all nodes without any backtracking.

But this is not usually the case in many

examples!

•à Consider the same example, with

minor difference:

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B}

• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

A

E

B

C

D
G

F

discovery | finishing time
0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C}

• Visited = {A, B}

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C}

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 | 4

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}

• Visited = {A, B, C, D}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E}

• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G}

• Visited = {A, B, C, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to

the last alternative path

• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}

• Visited = {A, B, C, D, E, G, F}

Nothing left to explore à empty stackà Halt
All nodes are visited, and we reach to the root

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

A

E

B

C

D
G

F

discovery | finishing time
0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

CLRS DPV

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

A

E
B

C

D
G

F

! Demo code time!

A

E
B

C

D
G

F

Graph-1 Graph-2

Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time

• DFS is called exactly once per vertex

• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

Implementation Data Structure Running Time Space Complexity

BFS Iterative Queue (FIFO) O(|V| + |E|) O(|V|)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|) O(|V|)

Graph
• Graph definition and representation

• Adjacency matrix

• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)

• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)

• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network

• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Now, we know
how to run BFS
and DFS from a
given source
node.

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Connectivity
problem can be
solved by both

BFS and DFS

Graph Traversal: Connected Component
• Connected component problem. Find all nodes reachable from s.

• Upon termination, R is the connected component containing s.

• BFS
• DFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to

London (LHR)?

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to

London (LHR)?

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

JFK

ATL

LHR

LAX

SFO

source

destination

Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to

London (LHR)?

• Flights:

• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

JFK

ATL

LH
R

LA
X

SFO

source

destination

• Define the corresponding
graph

• Run BFS or DFS from the
source node, i.e., the node
associated with ATL

• During the traversal check
if the destination (LHR) is a
neighbor of the current
node

! Demo code time!

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

grid =

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

grid =

Each cell = graph node

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

Each cell = graph node

grid =
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

Each cell = graph node

grid =
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

So, we can define the
corresponding graph, then
run BFS or DFS from each
grid cell with the value of 1,
i.e., grid[i][j]=1 and mark
visited nodes.
Number of islands is equal
to the number of times we
need to start a search

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

Each cell = graph node

grid =
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

But do we need to define
the corresponding graph
explicitly? (by defining the
adjacency matrix or
adjacency list?)

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing

the number islands. An island includes one or more horizontally or

vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

Each cell = graph node

grid =
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

We know the nodes (= grid
cells) and we know the
neighbors (the relationship),
so we can skip the graph
definition part!

! Demo code!

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Before
continuing with

applications,
let’s revisit a few
things from BFS

and DFS

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 73

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

Formally, given graph G = ($, &) with source s, we
define the predecessor subgraph of G as G! =
($!, &!) where
$! =) ∈ $:). - ≠ NIL ∪ {4}
&! =). -,) :) ∈ $! − {4} (tree edges)

When applied to a directed or undirected graph
G = ($, &), BFS constructs - so that the predecessor
subgraph G! = ($!, &!) is a breadth-first tree.

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 74

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

Formally, given graph G = ($, &) with source s, we
define the predecessor subgraph of G as G! =
($!, &!) where
$! =) ∈ $:). - ≠ NIL ∪ {4}
&! =). -,) :) ∈ $! − {4} (tree edges)

When applied to a directed or undirected graph
G = ($, &), BFS constructs - so that the predecessor
subgraph G! = ($!, &!) is a breadth-first tree.

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 75

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

A

E
B

C
D

G

F

Source:

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 76

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.

A

E
B

C
D

G

F

Source:

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 77

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

BFS builds a breadth-first tree as it searches the graph.
Printing out the vertices on a shortest path from s to v,
using the BFS tree

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 78

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it searches the
graph.

Ø We can print out the vertices on a shortest path
from s to v, using the BFS tree

Ø We only have one distance measure (timestamp),
denoted by d, assigned to each node, i.e., the time
that a node visited for the first (and last) time.

The predecessor subgraph produced by a DFS may be
composed of several trees, because the search may
repeat from multiple sources.

The predecessor subgraph of a depth-first search forms
a depth-first forest comprising several depth-first trees.

DFS timestamps each node with two numbers;
d (discovery time): the first time we visit the node and
f (finishing time): the last time we visit the node (after
exploring all possible paths followed the node)

DFS Forest Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 79

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

DFS Forest Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 80

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

DFS Forest Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 81

More accepted definition of DFS Forest

Number of times DFS-Visit(G, u) is called = Number of trees

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 82

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it
searches the graph.

Ø We can print out the vertices on a shortest
path from s to v, using the BFS tree

Ø We only have one distance measure
(timestamp), denoted by d, assigned to each
node, i.e., the time that a node visited for
the first (and last) time.

The timestamps have parenthesis structure:
In any DFS on graph G = #, % , for any two
vertices u and v, exactly one of the following can
happen:

1. [u. d, u. f] and [v. d, v. f] are disjoint
2. The interval [u. d, u. f] is contained entirely

within the interval [v. d, v. f]
3. The interval [v. d, v. f] is contained entirely

within the interval [u. d, u. f]

DFS: Timestamps Parenthesis Structure
• The timestamps have parenthesis structure:
• In any DFS on graph G = #, % , for any two vertices u and v, exactly

one of the following can happen:

1. The intervals [u. d, u. f] and [v. d, v. f] are entirely disjoint, and neither u nor v
is a descendant of the other in the depth-first forest.

2. The interval [u. d, u. f] is contained entirely within the interval [v. d, v. f], and
u is a descendant of v in a depth-first tree.

3. The interval [v. d, v. f] is contained entirely within the interval [u. d, u. f] , and
v is a descendant of u in a depth-first tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 83

DFS Parenthesis Structure Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 84

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

DFS Parenthesis Structure Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 85

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

0 |13A

B 1 |12

0 13

C 2 | 5

D 3 | 4

1

2

3 4

5

12

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 86

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it
searches the graph.

Ø We can print out the vertices on a shortest
path from s to v, using the BFS tree

Ø We only have one distance measure
(timestamp), denoted by d, assigned to each
node, i.e., the time that a node visited for
the first (and last) time.

Ø The predecessor subgraph of a depth-first
search forms a depth-first forest
comprising several depth-first trees.

Ø DFS timestamps each node with two
numbers;
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 87

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Now, we can
continue with

the applications

References
• The lecture slides are mainly based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,

Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.

• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

88CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

