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Graph

* Graph definition and representation * Graph problems/algorithms
* Adjacency matrix * Minimum spanning tree (MST)
* Adjacency list e Kruskal (greedy)

* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
* Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
* Topological sorting e Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
* Connected components
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Graph

* Review of graph definition and representation
* Adjacency matrix
* Adjacency list

* Graph traversal
* Breadth first search (BFS)
* Depth first search (DFES)
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Graph Properties and Terminology Review

* Notation. G = (V, E)
* V'=nodes (or vertices).
» E = edges (or arcs) between pairs of nodes.
- Captures pairwise relationship between objects.
» Graph size parameters: n = |V|, m = |E].

V={1,2,3,4,5,6,7,8}
E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }

m=11,n=28
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Graph Properties and Terminology Review

* Notation. G = (V, E)
- V'=nodes (or vertices). {0, 1,2, ... n-1}
- E'=edges (or arcs) between pairs of nodes. fe, e, ... en} where e, = (v;, vi)
- Captures pairwise relationship between objects.

e Directed vs. undirected

* Weighted vs. unweighted
* Weights = properties assigned to edges (usually) and/or nodes
* E.g., distance, cost, time




Graph Properties and Terminology Review

* Notation. G = (V, E)
- V'=nodes (or vertices). {0, 1,2, ... n-1}
- £ = edges (or arcs) between pairs of nodes. {ey, e, ... en} where ;= (vi, v;)
- Captures pairwise relationship between objects.

* Directed vs. undirected @ T
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* Weighted vs. unweighted
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Graph Properties and Terminology Review

* Notation. G = (V, E)
- V'=nodes (or vertices). {0, 1,2, ... n-1}
- £ = edges (or arcs) between pairs of nodes. {ey, e, ... en} where ;= (vi, v;)
- Captures pairwise relationship between objects.

* Directed vs. undirected = @ o
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* Weighted vs. unweighted
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Graph Properties and Terminology Review

* Notation. G = (V, E)
- V'=nodes (or vertices). {0, 1,2, ... n-1}
- £ = edges (or arcs) between pairs of nodes. {ey, e, ... en} where ;= (vi, v;)
- Captures pairwise relationship between objects.

e Directed vs. undirected

* Weighted vs. unweighted

V={1,2,3,4,5,6,7,8}

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }

m=11,n=28
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Graph Properties and Terminology Review

* Notation. G = (V, E)
* V'=nodes (or vertices).
- E = edges (or arcs) between pairs of nodes.

* Graph parameters:
* Graph size parameters: n = V]|, m = |E|.
* Degree(1): number of edges on node 1

In-degree (directed networks): number of incoming links
Out-degree (directed networks): the number of outgoing links

e
4




Graph Properties and Terminology Review

* Adjacency matrix. n-by-n matrix with 4,,, = 1 if (u, v) 1s an edge.
* Two representations of each edge.

 Space proportional to n2. 123456738
 Checking if (u, v) is an edge takes ®(1)time. 1|0 1 1 0 0 0 0 O
* Identifying all edges takes ®(n?) time. 2110 1@ 1000
3/{11001011
410(0)001000
501110100
6|/00001000
/7100100001
8100100010
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Graph Properties and Terminology Review

* Adjacency matrix. n-by-n matrix with 4,,, = 1 if (u, v) 1s an edge.

] 12345678
* Two representations of each edge. 101100000

* Space proportional to 12 G e e ol
PEPE . _ 3/11001011

* Checking 1f (u, v) 1s an edge takes ®(1) time. 4101001000
i . 501110100

* Identifying all edges takes ®(n?) time. 600001000
7/00100001

* Notes 800100010

* Weighted graphs > 4, =w,,
 Undirected graphs > 4 = A" (symmetric adj. matrix)
* Duplicate information

* Inefficient if graphs are sparse (lots of “zero”s)

* Easy to determine quickly if there 1s a link between nodes 1 and j
* AlLk] +Afk,]

v
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Graph Properties and Terminology Review

e Directed vs. undirected Piecte

* Weighted vs. unweighted

] .
= Demo code time!

Undirected
Unweighted

Unweighted

Graph-1

Undirected

Directed Weighted

Weighted

v
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Graph Properties and Terminology Review

* Adjacency lists. Node-indexed array of lists.

» Two representations of each edge. degree = ntimberof neighbors of 4
* Space 1s O(m + n). /
* Checking 1f (u, v) 1s an edge takes O(degree(u)) time.

1

2 1 | oe+—»

3 [2] e

4 2 )-——»

5 .,

7 |3

8 |3

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 14




Graph Properties and Terminology Review

* Adjacency lists. Node-indexed array of lists.

! degree = number of neighbors of u
* Two representations of each edge. F F
* Space 1s O(m + n).

* Checking 1f (u, v) 1s an edge takes O(degree(u)) time.

O r N W B

3:100 | /

0 420 1 //
4:100 1:150 2:400

175 150 4
3:400 0:175 | /

400
2 3 -
100 \\ 0:420 3:150 | /

\ 1:420 2:175 | /

e
4




Graph Properties and Terminology Review

e Directed vs. undirected Piecte

* Weighted vs. unweighted

] .
= Demo code time!

Undirected
Unweighted

Unweighted

Graph-1

Undirected

Directed Weighted

Weighted

v
L 4




Graph Definition: Summary

* Two common ways to represent graphs
* Adjacency matrix
* Adjacency list
* Adjacency matrix
* Space: n? elements for n vertices
* Easy to check 1f a link exists between two vertices
* Adjacency list
* More common representation: most large real-world graphs are sparse

* Space: Number of edges [2*(number of edges) if undirected] + number of
vertices, 1.e., (m+n) or (2m-+n)

* Linked list implementation is typically used

e
4




Graph Properties and Terminology Review

* Paths and connectivity

* Def. A path in a directed/undirected graph
G = (V, E) 1s a sequence of nodes vy, vy, ..., V; il ] i i i i
with the property that each consecutive pair Path2:0 > 153 52
v, 1, v; 1s joined by a different edge in E.

* Def. A path 1s simple 1f all nodes are distinct. . ‘0 O

* Def. An undirected graph 1s connected 1f for (S

every pair of nodes u and v, there 1s a path 0
between u and v. (o) (13)
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Graph Properties and Terminology Review

* Cycles

* Def. A cycle 1s a path v, v,, ..., v, In which
vi=v.and k> 2.

* Def. A cycle 1s simple if all nodes are
distinct (except for v, and v, ).

CycleC=1>2>4>5->3>1

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Properties and Terminology Review

* Def. A directed acyclic graphs (DAG) 1s a directed graph that contains

no directed cycles.

e We’ll re-visit this later!

% CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Properties and Terminology Review

* Def. A bipartite graph 1s an undirected graph G = (V, E) in which V'
can be partitioned into two sets V; and V, such that (¢, v) € E implies
citheru € V;andve V,oru € V,and v € V; . That 1s, all edges go
between the two sets V; and V.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Properties and Terminology Review

e Trees

* Def. An undirected graph 1s a tree 1f
* 1t 1s connected and
* does not contain a cycle.

* Theorem. Let G be an undirected graph on # nodes. Any two of the
following statements imply the third one:
I. G 1s connected.
2. G does not contain a cycle.

3. Ghasn—1 edges.

%> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Properties and Terminology Review

e Trees

* Def. An undirected graph 1s a tree 1f

* it 1s connected and does not contain a cycle.

* Trees can be considered as special cases of graphs (trees © graphs)

* All graph algorithms can also be applied to trees

 (with or without some modifications/simplifications)

* We are mostly interested in particular types of trees

* Binary search trees € Binary trees © N-ary trees © Rooted trees
* Recursion trees
* Minimum spanning tree (MST)

Y




Graph Properties and Terminology Review

* Rooted trees

* Given a tree 7, choose a root node » and orient each edge away from 7.
* One vertex designated as the root

root r
° 1 ) the parent of v
o O—O ©
/ \ Samicd
T(n/b) T(nib) -+ T(nl/b) o ° ° o 6 @ G ° a child of v

I A

a tree the same tree, rooted at 1

* Ex. binary tree, binary search tree, recursion trees
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Graph Properties and Terminology Review

* Rooted trees

* Given a tree T, choose a root node 7 and orient each edge away from 7.
* One vertex designated as the root
* Ex. binary tree, binary search tree, recursion trees

T (n)

i

T(n/b) T(n/b)y -+ T(n/b)

Z IS TN 2
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Graph

* Graph problems/algorithms
* Minimum spanning tree (MST)
* Kruskal (greedy)
* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
» Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
» Testing bipartiteness * Floyd-Warshall (dynamic programming)
e Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
* Topological sorting » Ford-Fulkerson algorithm

* Tree traversal (in-order, pre-order, post-order)
e Connected components
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Graph Traversal

* Connectivity and Traversal

» s-t connectivity problem. Given two nodes s and ¢, is there a path between s and ¢ ?
(is t reachable from s?)

* s-t shortest path problem. Given two nodes s and ¢, what is the length of a shortest path
between s and ¢ ?

 [Strongly] connected component is a set of vertices all reachable from each other
(mutually reachable)

 Connected component problem. Find all nodes reachable from s.

* Applications
* Facebook, mutual friends
* Maze traversal
* Fewest hops in a communication network

e
4




Graph Traversal

* Traversal = Exploring = Searching
* A graph needs to be traversed in order to determine some properties

* Breadth-first search (BFYS)

* Shortest path (unweighted graphs)
* Testing bipartiteness

* Tree traversal (level-order)

* Connected components

* Depth-first search (DFS)

* Topological sorting
* Tree traversal (in-order, pre-order, post-order)
* Connected components

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal

* Traversal = Exploring = Searching

* A graph needs to be traversed in order to determine some properties

; Implementation | Data Structure
e Breadth-first search (BFS) .
. Shor‘test path gunwelghted graphs) S5 [Ttk Onone (FIFO)
* Testing bipartiteness
e Tree traversal (level-order
( ) DFS | Recursive (not explicitly required =

Connected components

* Depth-first search (DFS)

* Topological sorting

Iterative

execution stack)

Stack (LIFO)

* Tree traversal (in-order, pre-order, post-order)
* Connected components

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

* An efficient graph traversal procedure

66 9%
S

e BFS starts from a source vertex

* At each vertex u, all neighbors, 1.e., vertices v adjacent to u are visited

before moving on to vertices adjacent to some v
e [terative implementation.

* Needs queue data structure

* Traversal = Exploring = Searching
(visiting vertices one-by-one)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

* An efficient graph traversal procedure

e 9%
S

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

BFS(G,s)
1 foreachvertexu € G.V — {s}
2 u.color = WHITE white := unvisited node
3 u.d = 00 distance from source
4 u.w = NIL parent
5 s.color = GRAY
51 sldl= o gray := visited node
T sl = NIE
8 0=20
9 ENQUEUE(Q,s)

10 while O # 0

11 u = DEQUEUE(Q)

12 for each v € G.Adj[u]

13 if v.color == WHITE

14 v.color = GRAY

15 v.d =ud+1

16 Voo T=ru

17 ENQUEUE(Q,v)

18 u.color = BLACK

black := visited & all

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

* An efficient graph traversal procedure

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

e 9%
S

v
L 4




Graph Traversal: BES

o_

Source: “s

T

* An efficient graph traversal procedure

e 9%
S

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

* Queue = {}
* Visited = {}
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Graph Traversal: BES

* An efficient graph traversal procedure Source:

e 9%
S

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

* Queue = {A}
* Visited = {}

o_

S

%> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BES

* An efficient graph traversal procedure Source:

e 9%
S

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

* Queue = {A}
* Visited = {A}

o_

S
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Graph Traversal: BES

* An efficient graph traversal procedure Source:

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

* Queue = {A, B, C, F}
* Visited = {A, B, C, F}

o_

S

“S,, \
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Graph Traversal: BES

* An efficient graph traversal procedure Source:

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

* Queue = {A, B, C, F}
* Visited = {A, B, C, F}

o_

S

“S,, \
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

* Queue = {A,B,C, F, D, E}
* Visited = {A, B, C, F, D, E}

already
visited!

@> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

* Queue = {A,B,C, F, D, E}
* Visited = {A, B, C, F, D, E}

to add

@> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on toiy, _ 4
vertices adjacent to some v /&‘
no ne

W (©
* Queue = {A, B, C, E D, E} to add
* Visited = {A, B, C, F, D, E}

 BFS starts from a source vertex

@> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

* Queue = {A, B, C, E, D, E, G}
e Visited = {A,B,C, F, D, E, G}

@> CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

* Queue = {A, B, C, E, D, E, G}
e Visited = {A,B,C, F, D, E, G}
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

*Queue={A,B, €, ED, E G} [onewn
+ Visited = {A, B, C, F, D, E, G}  neighbgs
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Graph Traversal: BFS

o_

* An efficient graph traversal procedure Source: s

CCS79 \

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

 BFS starts from a source vertex

* Queue = {A, B, C, E, D, E, G}
e Visited = {A,B,C, F, D, E, G}

Nothing left in the queue = All nodes are visited = Halt

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: BFS the “shortest distance”

from the source!

o_’

* An efficient graph traversal procedure Source: s

 BFS starts from a source vertex s’

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving onto 4 _ 4
vertices adjacent to some v

* Queue = {A, B, C, E, D, E, G}
e Visited = {A,B,C, F, D, E, G}

Nothing left in the queue = All nodes are visited = Halt d=2
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Graph Traversal: BFS ¢

o_

Source: “s

T

* An efficient graph traversal procedure

e 9%
S

 BFS starts from a source vertex

* At each vertex u, all neighbors, 1.€., vertices
v adjacent to u are visited before moving on to
vertices adjacent to some v

* Queue = {}
* Visited = {}

= Demo code time!

\

v
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Graph Traversal: BFS

* BFS runs in O(|V| + |E|) time

* The worst case 1s when the graph 1s connected.
* Each vertex 1s added to the queue and removed from it exactly once

* Each adjacency list 1s used exactly once

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: DFS

* DFS follows a single path as far (deep) as possible and then backtracks
to the last alternative path.

* No explicit storage of vertices 1s required (BFS needs a queue)

* However, calls for each vertex build up on the execution stack
(recursive implementation)

* An 1terative implementation 1s possible using an explicit stack data
structure.

* Traversal = Exploring = Searching
(visiting vertices one-by-one)
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A Note about Recursive Algorithms

* In general, recursive algorithms can be used in various setups:
* Backtracking

* Ex. Enumerating all subsets of a given set or array

» Usually (not always!), in these cases we can expect an exponential runtime O(a™), where
a 1s the number of possible options to choose at each step which 1s equal to the number
branches after each node in the recursion tree.

* Divide-and-Conquer (D&C) Do you remember this slide?

* Dynamic programming (DP)

* Traversing a graph or tree using the depth-first search (DFS) approach

v
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Graph Traversal: DFS

DFS(G)
for each vertex u € G.V
u.color = WHITE

1

2

3 u.m = NIL
4 time = 0
5
6
7

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

for each vertex u € G.V
if u.color == WHITE
DFS-VIsIT(G, u)

DFS-VISIT(G, u)

time = time + 1 // white vertex u has just been discovered
u.d = time
u.color = GRAY
for each v € G.Adj[u] // explore edge (u,v)
if v.color == WHITE
VT = U
DFS-VISIT(G, v)
u.color = BLACK // blacken u; it is finished
time = time + 1
u.f = time

SO0 N WN -

[e—
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Graph Traversal: DE

x discovery | finishing time
¢ g

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

» Stack = {A}
* Visited = {A}
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Graph Traversal: DE

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Stack = {A, B}
* Visited = {A}

0|

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: DE

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Stack = {A, B}
* Visited = {A}

0|

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

53




Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

» Stack = {A, B, C}
* Visited = {A, B}

discovery | finishing time

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

» Stack = {A, B, C, D}
* Visited = {A, B, C}

0|

discovery | finishing time
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

» Stack = {A, B, C, D, E}
* Visited = {A, B, C, D}

0|

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

* Stack={A, B, C, D, E, G}
 Visited = {A, B, C, D, E}

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

discovery | finishing time

» Stack={A,B,C, D, E, G, F}
* Visited = {A, B, C, D, E, G}

@) CS-3510: Design and Analysis of Algorithms | Summer 2022
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

» Stack={A,B,C, D, E, G, F}
e Visited = {A, B, C, D, E, G, F}

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

/23

°Stack—{A B,C, D, E, Gﬁ}

* No more path to explore—> backtrack

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

/23

 Stack = {A,B,C, D, E, $¢. %}
* Visited = {A, B, C, D, E, G, F}

* No more path to explore—> backtrack 518

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

/23

 Stack = {A, B, C, D, 5¢ $¢. %}
e Visited = {A, B, C, D, E, G, F}

* No more path to explore—> backtrack

discovery | finishing time

2 |
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

/

 Stack = {A, B, C, i, 5¢ $¢. %}
e Visited = {A, B, C, D, E, G, F}

* No more path to explore—> backtrack

6|7

A

0|

419

5|8

discovery | finishing time

3|10
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

0|

/23

* Stack = {A, B, $¢, R, 5¢ $¢. %}
e Visited = {A, B, C, D, E, G, F}

* No more path to explore—> backtrack 518

2
(a0
A |
0

discovery | finishing time

2| 11
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

discovery | finishing time

/23

* Stack = {A, . 3¢ IR 5e $¢. %}
e Visited = {A, B, C, D, E, G, F}

* No more path to explore—> backtrack

2| 11
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

discovery | finishing time

/R

* Stack = {3, R % R 5 &K
* Visited = {A,B,C, D, E, G, F}

* No more path to explore—> backtrack

* No more element in the stack 2 Halt

2| 11
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

discovery | finishing time

* Note 1n this example we were able to

reach all nodes without any backtracking.
But this 1s not usually the case 1n many
examples!

2| 11
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

discovery | finishing time

* Note 1n this example we were able to

reach all nodes without any backtracking.
But this 1s not usually the case 1n many
examples!

» = Consider the same example, with
minor difference:

2| 11
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Graph Traversal: D

s
A

x discovery | finishing time
¢ g

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

» Stack = {A}
* Visited = {A}
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Graph Traversal: D

s
A

x discovery | finishing time
¢ g

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

» Stack = {A}
* Visited = {A}
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Graph Traversal: D

s
A

x discovery | finishing time

* DFS follows a single path as far (deep) y
T 0 |

as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

» Stack = {A, B}
* Visited = {A}
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Graph Traversal: DFS

discovery | finishing time
O |

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

* Stack = {A, B, C}
* Visited = {A, B}
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Graph Traversal: DFS

discovery | finishing time
O |

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

* Stack = {A, B, C, D}

* Visited = {A, B, C}
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Graph Traversal: DFS

discovery | finishing time
O |

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

» Stack = {A, B, C, D} 2 |

* Visited = {A, B, C, D}

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 74




Graph Traversal: DFS

discovery | finishing time
O |

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference =2

» Stack = {A, B, C, D} 2 |

* Visited = {A, B, C, D}
* No more path to explore = backtrack
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Graph Traversal: DFS

discovery | finishing time
O |

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference =2

/R

* Stack = {A, B, C, ¢}
* Visited = {A, B, C, D}
* No more path to explore = backtrack
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference =2

/B3
* Stack = {A, B, §¢, R}
* Visited = {A, B, C, D}

* No more path to explore = backtrack

discovery | finishing time
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference -

* Stack = {A, B, §¢, &, E}
* Visited = {A, B, C, D}

discovery | finishing time

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

78




Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =

* Stack = {A, B, §¢, . E, G}
 Visited = {A, B, C, D, E}

discovery | finishing time

2|5
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =

* Stack = {A, B, §¢ . E, G, F}
* Visited = {A, B, C, D, E, G}

discovery | finishing time

2|5
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =

* Stack = {A, B, §¢ . E, G, F}
e Visited = {A,B,C, D, E, G, F}

discovery | finishing time

2|5

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

81




Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =

* Stack = {A, B, §¢ . E, G, F}
e Visited = {A, B, C, D, E, G, F}
* No more path to explore = backtrack

discovery | finishing time

2|5
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =2
/3

* Stack = {A, B, §¢ . E, G, &}
e Visited = {A, B, C, D, E, G, F}

discovery | finishing time

2|5
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with

0|

minor difference =2
/B3

* Stack = {A, B, §¢, . E. $%¢. %}
e Visited = {A, B, C, D, E, G, F}

* No more path to explore = backtrack

discovery | finishing time

2|5
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Graph Traversal: DFS

discovery | finishing time

* DFS follows a single path as far (deep)
as possible and then backtracks to O |
the last alternative path

 Consider the same example, with
minor difference =2

* Stack = {A, B, §¢ . %. %¢. %
e Visited = {A, B, C, D, E, G, F}

* No more path to explore = backtrack
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Graph Traversal: DFS

* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference =2

/

* Stack = {A, R, ¢ - ¥. ¢ ¢
e Visited = {A, B, C, D, E, G, F}

* No more path to explore = backtrack

d

iscovery | finishing time

0|

2|5
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* DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

 Consider the same example, with
minor difference =2

/2
* Stack = 3%, B §%¢ - K. ¢ K
e Visited = {A,B,C, D, E, G, F}

Nothing left to explore = empty stack—> Halt
All nodes are visited, and we reach to the root

iscovery | finishing time

0|13

7|10

2|5
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Graph Traversal: DFS

* DFS follows a single path as far (deep) as possible and then backtracks
to the last alternative path

Graph-2

= Demo code time!




Graph Traversal: DFS

* DFS also runs in O(|V| + |E|) time
* DFS is called exactly once per vertex

* Each adjacency list 1s used exactly once

Implementation | Data Structure Running Time
BFS | Iterative Queue (FIFO) O(V| + |E)
DFS | Recursive (not explicitly required > O(|V| + |E))
execution stack)
Iterative Stack (LIFO)
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Graph

* Graph problems/algorithms
* Minimum spanning tree (MST)
* Kruskal (greedy)
* Prim (greedy)

* Graph traversal « Shortest path (directed weighted graphs)
 Breadth first search (BFS) « Dijkstra (greedy)
* Shortest path (unweighted graphs) * Bellman-Ford (dynamic programming)
* Testing bipartiteness * Floyd-Warshall (dynamic programming)
» Tree traversal (level-order)
* Connected components e Flow network
* Depth first search (DFS) * Max-flow min-cut theorem
* Topological sorting e Ford-Fulkerson algorithm

» Tree traversal (in-order, pre-order, post-order)
e Connected components
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Graph Traversal: Connected Component

* Connected component problem. Find all nodes reachable from s.

R
R will consist of nodes to which s has a path
Initially R = {s}
While there is an edge (u,v) where ueR and v¢R
Add v to R
Fidwhile it’s safe to add v

* Upon termination, R 1s the connected component containing s.
* BFS
 DFS
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