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We are here!



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph
• Review of graph definition and representation
• Adjacency matrix
• Adjacency list

•Graph traversal
• Breadth first search (BFS)
• Depth first search (DFS)
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Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices).
・E = edges (or arcs) between pairs of nodes.
・Captures pairwise relationship between objects. 
・Graph size parameters: n = |V|, m = |E|. 
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V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8 



Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects. 
• Directed vs. undirected

• Weighted vs. unweighted
• Weights = properties assigned to edges (usually) and/or nodes 
• E.g., distance, cost, time
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Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects. 
• Directed vs. undirected

• Directed graph = digraph

• Weighted vs. unweighted
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Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects. 
• Directed vs. undirected

• Weighted vs. unweighted
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Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects. 
• Directed  vs. undirected
• Weighted vs. unweighted
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V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8 



Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices).
・E = edges (or arcs) between pairs of nodes.

• Graph parameters:
• Graph size parameters: n = |V|, m = |E|. 
• Degree(i): number of edges on node i

• In-degree (directed networks): number of incoming links
• Out-degree (directed networks): the number of outgoing links
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Graph Properties and Terminology Review
• Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge. 
• Two representations of each edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes Θ(1) time. 
• Identifying all edges takes Θ(n2) time. 
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Graph Properties and Terminology Review
• Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge. 
• Two representations of each edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes Θ(1) time. 
• Identifying all edges takes Θ(n2) time. 

• Notes
• Weighted graphs à Auv = wuv
• Undirected graphs à A = AT (symmetric adj. matrix)

• Duplicate information
• Inefficient if graphs are sparse (lots of “zero”s)
• Easy to determine quickly if there is a link between nodes i and j

• A[i,k] + A[k,j]
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Graph Properties and Terminology Review

• Directed vs. undirected

• Weighted vs. unweighted
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Graph Properties and Terminology Review
• Adjacency lists. Node-indexed array of lists.
• Two representations of each edge.
• Space is Θ(m + n).
• Checking if (u, v) is an edge takes O(degree(u)) time. 
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degree = number of neighbors of u 



Graph Properties and Terminology Review
• Adjacency lists. Node-indexed array of lists.
• Two representations of each edge.
• Space is Θ(m + n).
• Checking if (u, v) is an edge takes O(degree(u)) time. 
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degree = number of neighbors of u 
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Graph Properties and Terminology Review

• Directed vs. undirected

• Weighted vs. unweighted
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Graph Definition: Summary
• Two common ways to represent graphs
• Adjacency matrix
• Adjacency list 

• Adjacency matrix
• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of 

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used
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Graph Properties and Terminology Review
• Paths and connectivity

• Def. A path in a directed/undirected graph
G = (V, E) is a sequence of nodes v1, v2, ..., vk
with the property that each consecutive pair
vi–1, vi is joined by a different edge in E.

• Def. A path is simple if all nodes are distinct.

• Def. An undirected graph is connected if for
every pair of nodes u and v, there is a path
between u and v.
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Path1: 0 à 1 à 2
Path2: 0 à 1 à 3 à 2



Graph Properties and Terminology Review
• Cycles

• Def. A cycle is a path v1, v2, ..., vk in which 
v1 = vk and k ≥ 2.

• Def. A cycle is simple if all nodes are 
distinct (except for v1 and vk ). 
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Cycle C = 1 à 2 à 4 à 5 à 3 à 1 



Graph Properties and Terminology Review
• Def. A directed acyclic graphs (DAG) is a directed graph that contains 

no directed cycles. 

• We’ll re-visit this later!
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Graph Properties and Terminology Review
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies 
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go 
between the two sets V1 and V2. 
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Graph Properties and Terminology Review
• Trees
• Def. An undirected graph is a tree if 
• it is connected and 
• does not contain a cycle. 

• Theorem. Let G be an undirected graph on n nodes. Any two of the 
following statements imply the third one: 

1. G is connected.
2. G does not contain a cycle. 
3. G has n – 1 edges. 
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Graph Properties and Terminology Review
• Trees
• Def. An undirected graph is a tree if 
• it is connected and does not contain a cycle. 

• Trees can be considered as special cases of graphs (trees ⊆ graphs)
• All graph algorithms can also be applied to trees 
• (with or without some modifications/simplifications)

• We are mostly interested in particular types of trees
• Binary search trees ⊆ Binary trees ⊆ N-ary trees ⊆ Rooted trees
• Recursion trees 
• Minimum spanning tree (MST)
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Graph Properties and Terminology Review
• Rooted trees 
• Given a tree T, choose a root node r and orient each edge away from r.
• One vertex designated as the root 

• Ex. binary tree, binary search tree, recursion trees
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Graph Properties and Terminology Review
• Rooted trees 
• Given a tree T, choose a root node r and orient each edge away from r.
• One vertex designated as the root 
• Ex. binary tree, binary search tree, recursion trees
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Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph Traversal
•Connectivity and Traversal
• s-t connectivity problem. Given two nodes s and t, is there a path between s and t ?

(is t reachable from s?)
• s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path

between s and t ?
• [Strongly] connected component is a set of vertices all reachable from each other 

(mutually reachable)
• Connected component problem. Find all nodes reachable from s. 

• Applications
• Facebook, mutual friends
• Maze traversal
• Fewest hops in a communication network
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Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties 

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties 

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)



Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited 

before moving on to vertices adjacent to some v 
• Iterative implementation. 
• Needs queue data structure

• Traversal = Exploring = Searching
(visiting vertices one-by-one)
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 32

A

E

B

C

D
G

F



Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {}
• Visited = {}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A}
• Visited = {}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A}
• Visited = {A}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F}
• Visited = {A, B, C, F}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F}
• Visited = {A, B, C, F}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}
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• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS
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• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {}
• Visited = {}
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Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time 
• The worst case is when the graph is connected.
• Each vertex is added to the queue and removed from it exactly once 
• Each adjacency list is used exactly once
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Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path. 
• No explicit storage of vertices is required (BFS needs a queue)
• However, calls for each vertex build up on the execution stack 

(recursive implementation)
• An iterative implementation is possible using an explicit stack data 

structure.

• Traversal = Exploring = Searching
(visiting vertices one-by-one)
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A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο "! , where 
" is the number of possible options to choose at each step which is equal to the number 
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach
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Do you remember this slide?



Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C}
• Visited = {A, B}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D}
• Visited = {A, B, C}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E}
• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G}
• Visited = {A, B, C, D, E}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to exploreà backtrack
• No more element in the stack à Halt
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as possible and then backtracks to 
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• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Note in this example we were able to 
reach all nodes without any backtracking.
But this is not usually the case in many 
examples!
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Note in this example we were able to 
reach all nodes without any backtracking.
But this is not usually the case in many 
examples!
•à Consider the same example, with

minor difference:
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B}
• Visited = {A}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C}
• Visited = {A, B}

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 72

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |



Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E}
• Visited = {A, B, C, D}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G}
• Visited = {A, B, C, D, E}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
Nothing left to explore à empty stackà Halt
All nodes are visited, and we reach to the root
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Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path 
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Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time 
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once
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Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|) 

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|) 



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph Traversal: Connected Component
• Connected component problem. Find all nodes reachable from s. 

• Upon termination, R is the connected component containing s. 
• BFS 
• DFS
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