CS-3510: Design and Analysis of Algorithms

Graph Algorithms: Definitions and Traversal

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

CS-3510: Design and Analysis of Algorithms | Summer 2022

Graph

- Graph definition and representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal
 - Breadth first search (BFS)
 - Shortest path (<u>unweighted</u> graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
 - Depth first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

- Graph problems/algorithms
 - Minimum spanning tree (MST)
 - Kruskal (greedy)
 - Prim (greedy)
 - Shortest path (directed weighted graphs)
 - Dijkstra (greedy)
 - Bellman-Ford (dynamic programming)
 - Floyd-Warshall (dynamic programming)
 - Flow network
 - Max-flow min-cut theorem
 - Ford-Fulkerson algorithm

Graph

- Review of graph definition and representation
 - Adjacency matrix
 - Adjacency list

- Graph traversal
 - Breadth first search (BFS)
 - Depth first search (DFS)

- Notation. G = (V, E)
 - V =nodes (or vertices).
 - E = edges (or arcs) between pairs of nodes.
 - Captures pairwise relationship between objects.
 - Graph size parameters: n = |V|, m = |E|.

$$V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

 $E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$

m = 11, n = 8

5

- Notation. G = (V, E)
 - $V = \text{nodes} \text{ (or vertices). } \{0, 1, 2, ..., n-1\}$
 - E = edges (or arcs) between pairs of nodes. { $e_1, e_2, \dots e_m$ } where $e_i = (v_i, v_j)$
 - Captures pairwise relationship between objects.
- Weighted vs. unweighted
 - Weights = properties assigned to edges (usually) and/or nodes
 - E.g., distance, cost, time

• Notation. G = (V, E)

- $V = \text{nodes} \text{ (or vertices). } \{0, 1, 2, ..., n-1\}$
- E = edges (or arcs) between pairs of nodes. { $e_1, e_2, \dots e_m$ } where $e_i = (v_i, v_j)$
- Captures pairwise relationship between objects.

• Notation. G = (V, E)

- $V = \text{nodes} \text{ (or vertices). } \{0, 1, 2, \dots n-1\}$
- E = edges (or arcs) between pairs of nodes. { $e_1, e_2, \dots e_m$ } where $e_i = (v_i, v_j)$
- Captures pairwise relationship between objects.

- Notation. G = (V, E)
 - $V = \text{nodes} \text{ (or vertices). } \{0, 1, 2, ..., n-1\}$
 - E = edges (or arcs) between pairs of nodes. { $e_1, e_2, \dots e_m$ } where $e_i = (v_i, v_j)$
 - Captures pairwise relationship between objects.
- Directed vs. undirected
- Weighted vs. unweighted

 $V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$

 $E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$

m = 11, n = 8

9

3

5

- Notation. G = (V, E)
 - V =nodes (or vertices).
 - E = edges (or arcs) between pairs of nodes.
- Graph parameters:
 - Graph size parameters: n = |V|, m = |E|.
 - Degree(i): number of edges on node i
 - In-degree (directed networks): number of incoming links
 - Out-degree (directed networks): the number of outgoing links

• Adjacency matrix. *n*-by-*n* matrix with $A_{uv} = 1$ if (u, v) is an edge.

3

5

- Two representations of each edge.
- Space proportional to n^2 .
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

- Adjacency matrix. *n*-by-*n* matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n^2 .
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all edges takes $\Theta(n^2)$ time.

• Notes

- Weighted graphs $\rightarrow A_{uv} = w_{uv}$
- Undirected graphs $\rightarrow A = A^T$ (symmetric adj. matrix)
 - Duplicate information
- Inefficient if graphs are sparse (lots of "zero"s)
- Easy to determine quickly if there is a link between nodes i and j
 - A[i,k] + A[k,j]

3

Demo code time!

• Directed vs. undirected

Graph-3

- Adjacency lists. Node-indexed array of lists.
 - Two representations of each edge.
 - Space is $\Theta(m + n)$.
 - Checking if (u, v) is an edge takes O(degree(u)) time.

degree = number of neighbors of u

- Adjacency lists. Node-indexed array of lists.
 - Two representations of each edge.
 - Space is $\Theta(m + n)$.
 - Checking if (u, v) is an edge takes O(degree(u)) time.

degree = number of neighbors of u

Demo code time!

• Directed vs. undirected

Graph-3

Graph Definition: Summary

• Two common ways to represent graphs

- Adjacency matrix
- Adjacency list
- Adjacency matrix
 - Space: n² elements for n vertices
 - Easy to check if a link exists between two vertices
- Adjacency list
 - More common representation: most large real-world graphs are sparse
 - Space: Number of edges [2*(number of edges) if undirected] + number of vertices, i.e., (m+n) or (2m+n)
 - Linked list implementation is typically used

- Paths and connectivity
- Def. A **path** in a <u>directed/undirected</u> graph G = (V, E) is a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by a different edge in *E*.
- Def. A path is **simple** if all nodes are distinct.
- Def. An undirected graph is **connected** if for every pair of nodes *u* and *v*, there is a path between *u* and *v*.

Path1: $0 \rightarrow 1 \rightarrow 2$ Path2: $0 \rightarrow 1 \rightarrow 3 \rightarrow 2$

18

- Cycles
- Def. A **cycle** is a path $v_1, v_2, ..., v_k$ in which $v_1 = v_k$ and $k \ge 2$.
- Def. A cycle is **simple** if all nodes are distinct (except for v_1 and v_k).

Cycle C = $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1$

- Def. A <u>directed acyclic graphs (DAG)</u> is a directed graph that contains no directed cycles.
- We'll re-visit this later!

• Def. A bipartite graph is an <u>undirected</u> graph G = (V, E) in which V can be partitioned into two sets V_1 and V_2 such that $(u, v) \in E$ implies either $u \in V_1$ and $v \in V_2$ or $u \in V_2$ and $v \in V_1$. That is, all edges go between the two sets V_1 and V_2 .

- Trees
- Def. An undirected graph is a tree if
 - it is connected and
 - does not contain a cycle.

- Theorem. Let *G* be an undirected graph on *n* nodes. Any two of the following statements imply the third one:
 - 1. G is connected.
 - 2. G does not contain a cycle.
 - 3. G has n-1 edges.

9

2

5

6

• Trees

- Def. An undirected graph is a tree if
 - it is connected and does not contain a cycle.
- Trees can be considered as special cases of graphs (trees \subseteq graphs)
- All graph algorithms can also be applied to trees
 - (with or without some modifications/simplifications)
- We are mostly interested in particular types of trees
 - Binary search trees \subseteq Binary trees \subseteq N-ary trees \subseteq Rooted trees
 - Recursion trees
 - Minimum spanning tree (MST)

- Rooted trees
- Given a tree T, choose a root node r and orient each edge away from r.

• Ex. binary tree, binary search tree, recursion trees

CS-3510: Design and Analysis of Algorithms | Summer 2022

root r

- Rooted trees
- Given a tree T, choose a root node r and orient each edge away from r.
 - One vertex designated as the root
 - Ex. binary tree, binary search tree, recursion trees

Graph

- Graph definition and representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal
 - Breadth first search (BFS)
 - Shortest path (<u>unweighted</u> graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
 - Depth first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

- Graph problems/algorithms
 - Minimum spanning tree (MST)
 - Kruskal (greedy)
 - Prim (greedy)
 - Shortest path (directed weighted graphs)
 - Dijkstra (greedy)
 - Bellman-Ford (dynamic programming)
 - Floyd-Warshall (dynamic programming)
 - Flow network
 - Max-flow min-cut theorem
 - Ford-Fulkerson algorithm

Graph Traversal

Connectivity and Traversal

- <u>s-t connectivity problem</u>. Given two nodes *s* and *t*, is there a path between *s* and *t*? (is t reachable from s?)
- <u>s-t shortest path problem</u>. Given two nodes *s* and *t*, what is the length of a shortest path between *s* and *t*?
- [Strongly] connected component is a set of vertices all reachable from each other (mutually reachable)
- Connected component problem. Find all nodes reachable from *s*.
- Applications
 - Facebook, mutual friends
 - Maze traversal
 - Fewest hops in a communication network

Graph Traversal

- Traversal = Exploring = Searching
- A graph needs to be traversed in order to determine some properties
- Breadth-first search (BFS)
 - Shortest path (unweighted graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
- Depth-first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

Graph Traversal

- Traversal = Exploring = Searching
- A graph needs to be traversed in order to determine some properties

•	Breadth-first search (BFS)
	• Shortest path (unweighted graphs)

- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth-first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

	Implementation	Data Structure
BFS	Iterative	Queue (FIFO)
DFS	Recursive	(not explicitly required \rightarrow execution stack)
	<u>Iterative</u>	Stack (LIFO)

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- <u>Iterative</u> implementation.
- Needs queue data structure

• Traversal = Exploring = Searching (visiting vertices one-by-one)

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v

BFS(G, s)

for each vertex $u \in G.V - \{s\}$ u.color = WHITE2 3 $u.d = \infty$ $u.\pi = \text{NIL}$ parent s.color = GRAY $6 \ s.d = 0$ $s.\pi = \text{NIL}$ $Q = \emptyset$ ENQUEUE(Q, s)while $Q \neq \emptyset$ 10 u = DEQUEUE(Q)11 12 for each $v \in G.Adj[u]$ if v. color == WHITE 13 v.color = GRAY14 15 v.d = u.d + 116 $v.\pi = u$ 17 ENQUEUE(Q, ν) 18 u.color = BLACKblack := visited & all unvisited neighbors added to the queue

white := unvisited node distance from source parent gray := visited node

31

CS-3510: Design and Analysis of Algorithms | Summer 2022

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = {}
- Visited = {}

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A\}$
- Visited = {}

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A\}$
- Visited = $\{A\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F\}$
- Visited = $\{A, B, C, F\}$

Source: "s"

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F\}$
- Visited = $\{A, B, C, F\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E\}$
- Visited = $\{A, B, C, F, D, E\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E\}$
- Visited = $\{A, B, C, F, D, E\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E\}$
- Visited = $\{A, B, C, F, D, E\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E, G\}$
- Visited = $\{A, B, C, F, D, E, G\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E, G\}$
- Visited = $\{A, B, C, F, D, E, G\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E, G\}$
- Visited = $\{A, B, C, F, D, E, G\}$

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E, G\}$
- Visited = $\{A, B, C, F, D, E, G\}$

d = 2

Nothing left in the queue \rightarrow All nodes are visited \rightarrow Halt

CS-3510: Design and Analysis of Algorithms | Summer 2022

Graph Traversal: BFS the "shortest distance" from the source!

Source: "s"

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = $\{A, B, C, F, D, E, G\}$
- Visited = $\{A, B, C, F, D, E, G\}$

d = 2

Nothing left in the queue \rightarrow All nodes are visited \rightarrow Halt

CS-3510: Design and Analysis of Algorithms | Summer 2022

Source: "s"

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = {}
- Visited = $\{\}$

Demo code time!

В

- BFS runs in O(|V| + |E|) time
- The worst case is when the graph is connected.
 - Each vertex is added to the queue and removed from it exactly once
 - Each adjacency list is used exactly once

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path.
- No explicit storage of vertices is required (BFS needs a queue)
- However, calls for each vertex build up on the <u>execution stack</u> (<u>recursive</u> implementation)
- An <u>iterative</u> implementation is possible using an explicit <u>stack</u> data structure.
- Traversal = Exploring = Searching (visiting vertices one-by-one)

A Note about Recursive Algorithms

- In general, recursive algorithms can be used in various setups:
 - Backtracking
 - Ex. Enumerating all subsets of a given set or array
 - Usually (not always!), in these cases we can expect an exponential runtime $O(a^n)$, where a is the number of possible options to choose at each step which is equal to the number branches after each node in the recursion tree.
 - Divide-and-Conquer (D&C)

Do you remember this slide?

- Dynamic programming (DP)
- Traversing a graph or tree using the depth-first search (DFS) approach

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

DFS(G)

- 1 for each vertex $u \in G.V$ u.color = WHITE3 $u.\pi = NIL$
- time = 0
- for each vertex $u \in G.V$
 - if *u*.color == WHITE DFS-VISIT(G, u)

DFS-VISIT(G, u)

u.f = time

- time = time + 1// white vertex u has just been discovered u.d = timeu.color = GRAY// explore edge (u, v)for each $v \in G.Adj[u]$ if v. color == WHITE $\nu.\pi = u$ 6 DFS-VISIT (G, ν) u.color = BLACK
 - time = time + 1
- // blacken u; it is finished

CS-3510: Design and Analysis of Algorithms | Summer 2022

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

- Stack = $\{A\}$
- Visited = $\{A\}$

- Stack = $\{A, B\}$
- Visited = $\{A\}$

- Stack = $\{A, B\}$
- Visited = $\{A\}$

- Stack = $\{A, B, C\}$
- Visited = $\{A, B\}$

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, D}
Visited = {A, B, C}

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, D, E}
Visited = {A, B, C, D}

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, D, E, G}
Visited = {A, B, C, D, E}

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

• Stack = $\{A, B, C, D, E, G, F\}$ • Visited = $\{A, B, C, D, E, G\}$

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, D, E, G, F}
Visited = {A, B, C, D, E, G, F}

Pop

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

- Stack = {A, B, C, D, E, G, }
 Visited = {A, B, C, D, E, G, F}
- No more path to explore \rightarrow backtrack

60

Pop

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, D, E, , , }
Visited = {A, B, C, D, E, G, F}

• No more path to explore \rightarrow backtrack

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

• No more path to explore \rightarrow backtrack

6

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, C, X, X, X, X
Visited = {A, B, C, D, E, G, F}

• No more path to explore \rightarrow backtrack

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Stack = {A, B, X, X, X, X, X, Y
Visited = {A, B, C, D, E, G, F}

• No more path to explore \rightarrow backtrack

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop
Stack = {A, X, X, X, X, X, X, X
Visited = {A, B, C, D, E, G, F}

• No more path to explore \rightarrow backtrack

- Stack = $\{x, x, x, x, x, x, x, x\}$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore \rightarrow backtrack
- No more element in the stack \rightarrow Halt

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!
- → Consider the same example, with minor difference:

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A\}$
- Visited = $\{A\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A\}$
- Visited = $\{A\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B\}$
- Visited = $\{A\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →

• Stack =
$$\{A, B, C\}$$

• Visited = $\{A, B\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →

• Stack =
$$\{A, B, C, D\}$$

• Visited = $\{A, B, C\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →

• Stack =
$$\{A, B, C, D\}$$

• Visited = $\{A, B, C, D\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, C, D\}$
- Visited = $\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack = $\{A, B, C, \mathbf{N}\}$
- Visited = $\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

Pop

discovery | finishing time

3

4

2

76

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{G}, \mathcal{D}\}$
- Visited = $\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

Pop

discovery | finishing time

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{G}, \mathcal{D}, E\}$
- Visited = $\{A, B, C, D\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{Q}, \mathcal{Q}, E, G\}$
- Visited = $\{A, B, C, D, E\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{Q}, \mathcal{Q}, E, G, F\}$
- Visited = $\{A, B, C, D, E, G\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack = $\{A, B, \mathcal{L}, \mathcal{D}, E, G, F\}$
- Visited = $\{A, B, C, D, E, G, F\}$

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{Q}, \mathcal{Q}, E, G, F\}$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore → backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{D}, \mathcal{D}, E, G, \mathcal{D}\}$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore → backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{L}, \mathcal{D}, E, \mathcal{L}, \mathcal{D}\}$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore → backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{A, B, \mathcal{D}, \mathcal{D},$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore \rightarrow backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →

- Stack = $\{A, \mathbf{k}, \mathbf{$
- Visited = $\{A, B, C, D, E, G, F\}$
- No more path to explore → backtrack

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference →
- Stack = $\{ \bigstar, \bigstar, \heartsuit, \heartsuit, \heartsuit, \heartsuit, \bigstar, \bigstar, \bigstar, \bigstar, \bigstar, \bigstar \}$

Pop

• Visited = $\{A, B, C, D, E, G, F\}$

Nothing left to explore \rightarrow empty stack \rightarrow Halt All nodes are visited, and we reach to the root

• DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

- DFS also runs in O(|V| + |E|) time
- DFS is called exactly once per vertex
- Each adjacency list is used exactly once

	Implementation	Data Structure	Running Time
BFS	Iterative	Queue (FIFO)	O(V + E)
DFS	Recursive	(not explicitly required \rightarrow execution stack)	O(V + E)
	<u>Iterative</u>	Stack (LIFO)	

Graph

- Graph definition and representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal
 - Breadth first search (BFS)
 - Shortest path (<u>unweighted</u> graphs)
 - Testing bipartiteness
 - Tree traversal (level-order)
 - Connected components
 - Depth first search (DFS)
 - Topological sorting
 - Tree traversal (in-order, pre-order, post-order)
 - Connected components

- Graph problems/algorithms
 - Minimum spanning tree (MST)
 - Kruskal (greedy)
 - Prim (greedy)
 - Shortest path (directed weighted graphs)
 - Dijkstra (greedy)
 - Bellman-Ford (dynamic programming)
 - Floyd-Warshall (dynamic programming)
 - Flow network
 - Max-flow min-cut theorem
 - Ford-Fulkerson algorithm

Graph Traversal: Connected Component

• <u>Connected component problem</u>. Find all nodes reachable from *s*.

R will consist of nodes to which s has a path	s		
Initially $R = \{s\}$			
While there is an edge (u, v) where $u \in R$ and $v \notin R$			
Add v to R			
Endwhile	it's safe to add v		

- Upon termination, R is the connected component containing s.
 - BFS
 - DFS

D

References

- The lecture slides are mainly based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
 - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

