CS-3510:
 Design and Analysis of Algorithms

Graph Algorithms:
 Definitions and Traversal

Instructor: Shahrokh Shahi
College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

Graph

- Graph definition and representation

- Adjacency matrix
- Adjacency list

- Graph traversal

- Breadth first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm

Graph

- Review of graph definition and representation
- Adjacency matrix
- Adjacency list
- Graph traversal
- Breadth first search (BFS)
- Depth first search (DFS)

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices).
- $E=$ edges (or arcs) between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n=|V|, m=|E|$.

$$
V=\{1,2,3,4,5,6,7,8\}
$$

$E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8\}$
$m=11, n=8$

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices). $\{0,1,2, \ldots \mathrm{n}-1\}$
- $E=$ edges (or arcs) between pairs of nodes. $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}\right\}$ where $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
- Captures pairwise relationship between objects.
- Directed vs. undirected

- Weighted vs. unweighted
- Weights = properties assigned to edges (usually) and/or nodes
- E.g., distance, cost, time

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices). $\{0,1,2, \ldots \mathrm{n}-1\}$
- $E=$ edges (or arcs) between pairs of nodes. $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}\right\}$ where $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
- Captures pairwise relationship between objects.
- Directed vs. undirected
- Directed graph = digraph

- Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms
Summer 2022

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices). $\{0,1,2, \ldots \mathrm{n}-1\}$
- $E=$ edges (or arcs) between pairs of nodes. $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}\right\}$ where $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
- Captures pairwise relationship between objects.
- Directed vs. undirected

- Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms I Summer 2022

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices). $\{0,1,2, \ldots \mathrm{n}-1\}$
- $E=$ edges (or arcs) between pairs of nodes. $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}\right\}$ where $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
- Captures pairwise relationship between objects.
- Directed vs. undirected
- Weighted vs. unweighted

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8\} \\
& E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8\} \\
& m=11, n=8
\end{aligned}
$$

Graph Properties and Terminology Review

- Notation. $G=(V, E)$
- $V=$ nodes (or vertices).
- $E=$ edges (or arcs) between pairs of nodes.
- Graph parameters:
- Graph size parameters: $n=|V|, m=|E|$.
- Degree(i): number of edges on node i
- In-degree (directed networks): number of incoming links
- Out-degree (directed networks): the number of outgoing links

Graph Properties and Terminology Review

- Adjacency matrix. n-by- n matrix with $A_{u v}=1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta\left(n^{2}\right)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Properties and Terminology Review

- Adjacency matrix. n-by- n matrix with $A_{u v}=1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta\left(n^{2}\right)$ time.
- Notes

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Weighted graphs $\rightarrow A_{u v}=w_{u v}$
- Undirected graphs $\rightarrow A=A^{T}$ (symmetric adj. matrix)
- Duplicate information
- Inefficient if graphs are sparse (lots of "zero"s)
- Easy to determine quickly if there is a link between nodes i and j
- $A[i, k]+A[k, j]$

Graph Properties and Terminology Review

- Demo code time!
- Directed vs. undirected

Graph-1

- Weighted vs. unweighted

Graph-2

Graph-3

Graph-4

Graph Properties and Terminology Review

- Adjacency lists. Node-indexed array of lists.
- Two representations of each edge.
- Space is $\Theta(m+n)$.
- Checking if (u, v) is an edge takes $O(\operatorname{degree}(u))$ time.

Graph Properties and Terminology Review

- Adjacency lists. Node-indexed array of lists.
- Two representations of each edge.
- Space is $\Theta(m+n)$.
- Checking if (u, v) is an edge takes $O($ degree $(u))$ time.

Graph Properties and Terminology Review

- Demo code time!
- Directed vs. undirected

Graph-1

- Weighted vs. unweighted

Directed
Weighted

Graph-3

Graph-4

Graph Definition: Summary

- Two common ways to represent graphs
- Adjacency matrix
- Adjacency list
- Adjacency matrix
- Space: n^{2} elements for n vertices
- Easy to check if a link exists between two vertices
- Adjacency list
- More common representation: most large real-world graphs are sparse
- Space: Number of edges [2*(number of edges) if undirected] + number of vertices, i.e., $(\mathrm{m}+\mathrm{n})$ or $(2 \mathrm{~m}+\mathrm{n})$
- Linked list implementation is typically used

Graph Properties and Terminology Review

- Paths and connectivity
- Def. A path in a directed/undirected graph $G=(V, E)$ is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$ with the property that each consecutive pair v_{i-1}, v_{i} is joined by a different edge in E.

Path1: $0 \rightarrow 1 \rightarrow 2$
Path2: $0 \rightarrow 1 \rightarrow 3 \rightarrow 2$

- Def. A path is simple if all nodes are distinct.
- Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Graph Properties and Terminology Review

- Cycles
- Def. A cycle is a path $v_{1}, v_{2}, \ldots, v_{k}$ in which $v_{1}=v_{k}$ and $k \geq 2$.
- Def. A cycle is simple if all nodes are distinct (except for v_{1} and v_{k}).

Cycle $\mathrm{C}=1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1$

Graph Properties and Terminology Review

- Def. A directed acyclic graphs (DAG) is a directed graph that contains no directed cycles.
- We'll re-visit this later!

Graph Properties and Terminology Review

- Def. A bipartite graph is an undirected graph $\mathrm{G}=(V, E)$ in which V can be partitioned into two sets V_{1} and V_{2} such that $(u, v) \in E$ implies either $u \in V_{1}$ and $v \in V_{2}$ or $u \in V_{2}$ and $v \in V_{1}$. That is, all edges go between the two sets V_{1} and V_{2}.

Graph Properties and Terminology Review

- Trees
- Def. An undirected graph is a tree if
- it is connected and
- does not contain a cycle.

- Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third one:

1. G is connected.
2. G does not contain a cycle.
3. G has $n-1$ edges.

Graph Properties and Terminology Review

- Trees
- Def. An undirected graph is a tree if
- it is connected and does not contain a cycle.
- Trees can be considered as special cases of graphs (trees \subseteq graphs)
- All graph algorithms can also be applied to trees
- (with or without some modifications/simplifications)
- We are mostly interested in particular types of trees
- Binary search trees \subseteq Binary trees $\subseteq \mathrm{N}$-ary trees \subseteq Rooted trees
- Recursion trees
- Minimum spanning tree (MST)

Graph Properties and Terminology Review

- Rooted trees
- Given a tree T, choose a root node r and orient each edge away from r.
- One vertex designated as the root

the same tree, rooted at 1
- Ex. binary tree, binary search tree, recursion trees

Graph Properties and Terminology Review

- Rooted trees
- Given a tree T, choose a root node r and orient each edge away from r.
- One vertex designated as the root
- Ex. binary tree, binary search tree, recursion trees

Graph

- Graph definition and representation
- Adjacency matrix
- Adjacency list

- Graph traversal

- Breadth first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm

Graph Traversal

- Connectivity and Traversal

- s-t connectivity problem. Given two nodes s and t, is there a path between s and t ? (is t reachable from s?)
- s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path between s and t ?
- [Strongly] connected component is a set of vertices all reachable from each other (mutually reachable)
- Connected component problem. Find all nodes reachable from s.
- Applications
- Facebook, mutual friends
- Maze traversal
- Fewest hops in a communication network

Graph Traversal

- Traversal $=$ Exploring $=$ Searching
- A graph needs to be traversed in order to determine some properties
- Breadth-first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth-first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components

Graph Traversal

- Traversal $=$ Exploring $=$ Searching
- A graph needs to be traversed in order to determine some properties
- Breadth-first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth-first search (DFS)
- Topological sorting

	Implementation	Data Structure
BFS	$\underline{\text { Iterative }}$	$\underline{\text { Queue (FIFO) }}$
DFS	$\underline{\text { Recursive }}$	(not explicitly required \rightarrow execution stack)
	$\underline{\text { Iterative }}$	$\underline{\text { Stack (LIFO) }}$

- Tree traversal (in-order, pre-order, post-order)
- Connected components

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Iterative implementation.
- Needs queue data structure
- Traversal = Exploring = Searching (visiting vertices one-by-one)

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v

$\operatorname{BFS}(G, s)$

```
for each vertex \(u \in G . V-\{s\}\)
    u.color \(=\) wHITE \(\quad\) white \(:=\) unvisited node
    \(u . d=\infty \quad\) distance from source
    \(u . \pi=\) NIL parent
s.color \(=\) GRAY
s. \(d=0\)
\(s . \pi=\) NIL
\(Q=\emptyset\)
ENQUEUE \((Q, s)\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{DEQUEUE}(Q)\)
    for each \(v \in G . \operatorname{Adj}[u]\)
        if \(v\). color \(==\) WHITE
            v.color \(=\) GRAY
            v. \(d=u . d+1\)
            \(v . \pi=u\)
            EnQueue \((Q, v)\)
    u.color \(=\) BLACK
```


Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = \{ $\}$
- Visited $=\{ \}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A\}$
- Visited $=\{ \}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A\}$
- Visited $=\{A\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, C, F\}$
- Visited $=\{A, B, C, F\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, C, F\}$
- Visited $=\{A, B, C, F\}$

Source: "s"

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, C, F, D, E\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{E}\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, C, F, D, E\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{E}\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to $=1$ vertices adjacent to some v
- Queue $=\{A, B, E, F, D, E\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{E}\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{$ A, B, C, F, В, E, G $\}$
- Visited $=\{$ A, B, C, F, D, E, G $\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{$ A, B, C, F, В, Е, G $\}$
- Visited $=\{$ A, B, C, F, D, E, G $\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{$ A, B, С, F, В, Е, G $\}$
- Visited $=\{$ A, B, C, F, D, E, G $\}$

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, \mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{E}, \mathrm{G}\}$
- Visited $=\{$ A, B, C, F, D, E, G $\}$

Nothing left in the queue \rightarrow All nodes are visited \rightarrow Halt

Graph Traversal: BFS the "shortest distance"

- An efficient graph traversal procedure
- BFS starts from a source vertex " s "
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue $=\{A, B, \mathcal{E}, F, D, E, G\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{E}, \mathrm{G}\}$

Source: " s "

Nothing left in the queue \rightarrow All nodes are visited \rightarrow Halt

Graph Traversal: BFS

- An efficient graph traversal procedure
- BFS starts from a source vertex "s"
- At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited before moving on to vertices adjacent to some v
- Queue = \{ $\}$
- Visited $=\{ \}$

Demo code time!

Graph Traversal: BFS

- BFS runs in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time
- The worst case is when the graph is connected.
- Each vertex is added to the queue and removed from it exactly once
- Each adjacency list is used exactly once

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path.
- No explicit storage of vertices is required (BFS needs a queue)
- However, calls for each vertex build up on the execution stack (recursive implementation)
- An iterative implementation is possible using an explicit stack data structure.
- Traversal = Exploring = Searching (visiting vertices one-by-one)

A Note about Recursive Algorithms

- In general, recursive algorithms can be used in various setups:
- Backtracking
- Ex. Enumerating all subsets of a given set or array
- Usually (not always!), in these cases we can expect an exponential runtime $0\left(a^{n}\right)$, where a is the number of possible options to choose at each step which is equal to the number branches after each node in the recursion tree.
- Divide-and-Conquer (D\&C)

Do you remember this slide?

- Dynamic programming (DP)
- Traversing a graph or tree using the depth-first search (DFS) approach

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

DFS(G)
for each vertex $u \in G . V$
u.color $=$ WHITE
u. $\pi=$ NIL
time $=0$
for each vertex $u \in G . V$
if u. color $==$ WHITE
$\operatorname{DFS}-\operatorname{ViSIT}(G, u)$

6
7
$\operatorname{DFS}-\operatorname{ViSIT}(G, u)$
time $=$ time $+1 \quad / /$ white vertex u has just been discovered
u.d $=$ time
u.color $=$ GRAY
for each $v \in G . \operatorname{Adj}[u] \quad / /$ explore edge (u, v)
if v.color $==$ WHITE
$\nu . \pi=u$
$\operatorname{DFS}-\operatorname{VISIT}(G, \nu)$
u.color $=$ BLACK $/ /$ blacken u; it is finished
time $=$ time +1
10 u.f $=$ time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}\}$
- Visited $=\{A\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Visited $=\{A, B\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C\}$
discovery | finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
- Visited $=\{A, B, C, D\}$
discovery | finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, G $\}$
- Visited $=\{$ A, B, C, D, E $\}$

$3 \mid$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, G, F $\}$
- Visited $=\{$ A, B, C, D, E, G $\}$
p) discovery \mid finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, G, F $\}$
- Visited $=\{A, B, C, D, E, G, F\}$
discovery | finishing time

31

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{A, B, C, D, E, G, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack
discovery \| finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{$ A, B, C, D, E, $\mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack
discovery | finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop

- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \boldsymbol{X}, \boldsymbol{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop

- Stack $=\{A, B, C$, , $\boldsymbol{X}, \mathbf{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore \rightarrow backtrack
discovery | finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{/ P o p}, \mathbf{P}, \mathbf{X}\}$
- Visited $=\{A, B, C, D, E, G, F\}$
- No more path to explore \rightarrow backtrack
discovery | finishing time

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Stack $=\left\{A, \frac{\text { Pop }}{\text { Po }}, \mathbf{X}, \mathbf{X}\right\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Pop

- Stack $=\{\boldsymbol{x}, \mathbf{x}, \boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack
- No more element in the stack \rightarrow Halt

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Note in this example we were able to reach all nodes without any backtracking. But this is not usually the case in many examples!
- \rightarrow Consider the same example, with minor difference:

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}\}$
- Visited $=\{\mathrm{A}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}\}$
- Visited $=\{\mathrm{A}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}, \mathrm{B}\}$
- Visited $=\{\mathrm{A}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Visited $=\{\mathrm{A}, \mathrm{B}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
/ Pop
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathbf{又}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

3|4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow

Pop

- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{x}\}$
- Visited $=\{A, B, C, D\}$
- No more path to explore \rightarrow backtrack

| 4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{A, B, \mathbf{X}, \mathrm{E}\}$
- Visited $=\{A, B, C, D\}$

3|4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{A, B, \mathbf{X}, \mathrm{E}, \mathrm{G}\}$
- Visited $=\{A, B, C, D, E\}$

| 4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{A, B, \mathcal{C}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G $\}$

| 4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{A, B, \mathcal{X}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$

| 4

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
- Stack $=\{A, B, \mathcal{C}, \mathrm{E}, \mathrm{G}, \mathrm{F}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow

- Stack $=\{A, B, \mathbf{X}, \mathrm{E}, \mathrm{G}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

$3 \mid 4$

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
/ Pop
- Stack $=\{\mathrm{A}, \mathrm{B}, \mathbf{X}, \mathbf{X}, \mathrm{E}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow

- Stack $=\{A, B, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow

- Stack $=\{A, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$
- No more path to explore \rightarrow backtrack

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path
- Consider the same example, with minor difference \rightarrow
/ Pop
- Stack $=\{\boldsymbol{x}, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$
- Visited $=\{$ A, B, C, D, E, G, F $\}$

Nothing left to explore \rightarrow empty stack \rightarrow Halt All nodes are visited, and we reach to the root

Graph Traversal: DFS

- DFS follows a single path as far (deep) as possible and then backtracks to the last alternative path

Graph-2
Demo code time!

Graph Traversal: DFS

- DFS also runs in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time
- DFS is called exactly once per vertex
- Each adjacency list is used exactly once

	Implementation	Data Structure	Running Time
BFS	$\underline{\text { Iterative }}$	Queue (FIFO)	$\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{E}\|)$
DFS	$\underline{\text { Recursive }}$	(not explicitly required \rightarrow execution stack) Stack (LIFO)	$\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{E}\|)$

Graph

- Graph definition and representation
- Adjacency matrix
- Adjacency list
- Graph traversal
- Breadth first search (BFS)
- Shortest path (unweighted graphs)
- Testing bipartiteness
- Tree traversal (level-order)
- Connected components
- Depth first search (DFS)
- Topological sorting
- Tree traversal (in-order, pre-order, post-order)
- Connected components
- Graph problems/algorithms
- Minimum spanning tree (MST)
- Kruskal (greedy)
- Prim (greedy)
- Shortest path (directed weighted graphs)
- Dijkstra (greedy)
- Bellman-Ford (dynamic programming)
- Floyd-Warshall (dynamic programming)
- Flow network
- Max-flow min-cut theorem
- Ford-Fulkerson algorithm

Graph Traversal: Connected Component

- Connected component problem. Find all nodes reachable from s.

```
R will consist of nodes to which s has a path
Initially }R={s
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to }
Endwhile
```


it's safe to add v

- Upon termination, R is the connected component containing s.
- BFS
- DFS

References

- The lecture slides are mainly based on the suggested textbooks and the corresponding published lecture notes:
- CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., \& Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- KT: Kleinberg, J., \& Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
- DPV: Dasgupta, S., Papadimitriou, C. H., \& Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
- Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

