
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Graph Algorithms:
Definitions and Traversal

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Review of graph definition and representation
• Adjacency matrix
• Adjacency list

•Graph traversal
• Breadth first search (BFS)
• Depth first search (DFS)

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices).
・E = edges (or arcs) between pairs of nodes.
・Captures pairwise relationship between objects.
・Graph size parameters: n = |V|, m = |E|.

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects.
• Directed vs. undirected

• Weighted vs. unweighted
• Weights = properties assigned to edges (usually) and/or nodes
• E.g., distance, cost, time

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects.
• Directed vs. undirected

• Directed graph = digraph

• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects.
• Directed vs. undirected

• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects.
• Directed vs. undirected
• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices).
・E = edges (or arcs) between pairs of nodes.

• Graph parameters:
• Graph size parameters: n = |V|, m = |E|.
• Degree(i): number of edges on node i

• In-degree (directed networks): number of incoming links
• Out-degree (directed networks): the number of outgoing links

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Graph Properties and Terminology Review
• Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
• Two representations of each edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes Θ(1) time.
• Identifying all edges takes Θ(n2) time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Graph Properties and Terminology Review
• Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
• Two representations of each edge.
• Space proportional to n2.
• Checking if (u, v) is an edge takes Θ(1) time.
• Identifying all edges takes Θ(n2) time.

• Notes
• Weighted graphs à Auv = wuv
• Undirected graphs à A = AT (symmetric adj. matrix)

• Duplicate information
• Inefficient if graphs are sparse (lots of “zero”s)
• Easy to determine quickly if there is a link between nodes i and j

• A[i,k] + A[k,j]

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Graph Properties and Terminology Review

• Directed vs. undirected

• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

! Demo code time!

Graph-1

Graph-2

Graph-3

Graph-4

Graph Properties and Terminology Review
• Adjacency lists. Node-indexed array of lists.
• Two representations of each edge.
• Space is Θ(m + n).
• Checking if (u, v) is an edge takes O(degree(u)) time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

degree = number of neighbors of u

Graph Properties and Terminology Review
• Adjacency lists. Node-indexed array of lists.
• Two representations of each edge.
• Space is Θ(m + n).
• Checking if (u, v) is an edge takes O(degree(u)) time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

degree = number of neighbors of u

420

150

100

400

175

3:100

4:100 1:150 2:400

0
1
2
3
4

/

/

3:400 0:175 /

0:420 3:150 /

1:420 2:175 /

Graph Properties and Terminology Review

• Directed vs. undirected

• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

! Demo code time!

Graph-1

Graph-2

Graph-3

Graph-4

Graph Definition: Summary
• Two common ways to represent graphs
• Adjacency matrix
• Adjacency list

• Adjacency matrix
• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Graph Properties and Terminology Review
• Paths and connectivity

• Def. A path in a directed/undirected graph
G = (V, E) is a sequence of nodes v1, v2, ..., vk
with the property that each consecutive pair
vi–1, vi is joined by a different edge in E.

• Def. A path is simple if all nodes are distinct.

• Def. An undirected graph is connected if for
every pair of nodes u and v, there is a path
between u and v.

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Path1: 0 à 1 à 2
Path2: 0 à 1 à 3 à 2

Graph Properties and Terminology Review
• Cycles

• Def. A cycle is a path v1, v2, ..., vk in which
v1 = vk and k ≥ 2.

• Def. A cycle is simple if all nodes are
distinct (except for v1 and vk).

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Cycle C = 1 à 2 à 4 à 5 à 3 à 1

Graph Properties and Terminology Review
• Def. A directed acyclic graphs (DAG) is a directed graph that contains

no directed cycles.

• We’ll re-visit this later!

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Graph Properties and Terminology Review
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go
between the two sets V1 and V2.

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

V1

V2

Graph Properties and Terminology Review
• Trees
• Def. An undirected graph is a tree if
• it is connected and
• does not contain a cycle.

• Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third one:

1. G is connected.
2. G does not contain a cycle.
3. G has n – 1 edges.

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Graph Properties and Terminology Review
• Trees
• Def. An undirected graph is a tree if
• it is connected and does not contain a cycle.

• Trees can be considered as special cases of graphs (trees ⊆ graphs)
• All graph algorithms can also be applied to trees
• (with or without some modifications/simplifications)

• We are mostly interested in particular types of trees
• Binary search trees ⊆ Binary trees ⊆ N-ary trees ⊆ Rooted trees
• Recursion trees
• Minimum spanning tree (MST)

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Graph Properties and Terminology Review
• Rooted trees
• Given a tree T, choose a root node r and orient each edge away from r.
• One vertex designated as the root

• Ex. binary tree, binary search tree, recursion trees

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Graph Properties and Terminology Review
• Rooted trees
• Given a tree T, choose a root node r and orient each edge away from r.
• One vertex designated as the root
• Ex. binary tree, binary search tree, recursion trees

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph Traversal
•Connectivity and Traversal
• s-t connectivity problem. Given two nodes s and t, is there a path between s and t ?

(is t reachable from s?)
• s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path

between s and t ?
• [Strongly] connected component is a set of vertices all reachable from each other

(mutually reachable)
• Connected component problem. Find all nodes reachable from s.

• Applications
• Facebook, mutual friends
• Maze traversal
• Fewest hops in a communication network

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited

before moving on to vertices adjacent to some v
• Iterative implementation.
• Needs queue data structure

• Traversal = Exploring = Searching
(visiting vertices one-by-one)

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

A

E
B

C
D

G

F

distance from source
parent

white := unvisited node

gray := visited node

black := visited & all
unvisited neighbors
added to the queue

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

A

E

B

C

D
G

F

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {}
• Visited = {}

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

A

E

B

C

D
G

F

Source: “s”

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A}
• Visited = {}

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

A

E

B

C

D
G

F

Source: “s”

d = 0

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

A

E

B

C

D
G

F

Source: “s”

d = 0

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F}
• Visited = {A, B, C, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

A

E

B

C

D
G

F

Source: “s”

d = 0

d = 1

d = 1

d = 1

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F}
• Visited = {A, B, C, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2

already
visited!

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2

no new
neighbors
to add

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E}
• Visited = {A, B, C, F, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2

no new
neighbors
to add

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2

already
visited!

d = 3

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

no new
neighbors
to add

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

no new
neighbors
to add

• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

Nothing left in the queue à All nodes are visited à Halt

• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

Nothing left in the queue à All nodes are visited à Halt

Note d always presents
the “shortest distance”
from the source!

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {}
• Visited = {}

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

A

E

B

C

D
G

F

Source: “s”

! Demo code time!

Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time
• The worst case is when the graph is connected.
• Each vertex is added to the queue and removed from it exactly once
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path.
• No explicit storage of vertices is required (BFS needs a queue)
• However, calls for each vertex build up on the execution stack

(recursive implementation)
• An iterative implementation is possible using an explicit stack data

structure.

• Traversal = Exploring = Searching
(visiting vertices one-by-one)

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο "! , where
" is the number of possible options to choose at each step which is equal to the number
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Do you remember this slide?

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

A

E
B

C

D
G

F

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

A

E

B

C

D
G

F

discovery | finishing time

0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

A

E

B

C

D
G

F

discovery | finishing time

0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C}
• Visited = {A, B}

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D}
• Visited = {A, B, C}

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E}
• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G}
• Visited = {A, B, C, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

5 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |

5 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |7

5 |

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2 |

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

A

E

B

C

D
G

F

discovery | finishing time

0 |

1 |

2| 11

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

• No more path to exploreà backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

A

E

B

C

D
G

F

discovery | finishing time

0 |

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to exploreà backtrack
• No more element in the stack à Halt

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

• DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Note in this example we were able to
reach all nodes without any backtracking.
But this is not usually the case in many
examples!

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Note in this example we were able to
reach all nodes without any backtracking.
But this is not usually the case in many
examples!
•à Consider the same example, with

minor difference:

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

A

E

B

C

D
G

F

discovery | finishing time

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B}
• Visited = {A}

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

A

E

B

C

D
G

F

discovery | finishing time
0 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C}
• Visited = {A, B}

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C}

CS-3510: Design and Analysis of Algorithms | Summer 2022 73

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 74

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 75

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 76

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 |

3 | 4

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D}
• Visited = {A, B, C, D}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 77

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E}
• Visited = {A, B, C, D}

CS-3510: Design and Analysis of Algorithms | Summer 2022 78

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G}
• Visited = {A, B, C, D, E}

CS-3510: Design and Analysis of Algorithms | Summer 2022 79

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G}

CS-3510: Design and Analysis of Algorithms | Summer 2022 80

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

CS-3510: Design and Analysis of Algorithms | Summer 2022 81

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 82

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 |

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 83

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 |

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 84

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 85

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to explore à backtrack

CS-3510: Design and Analysis of Algorithms | Summer 2022 86

A

E

B

C

D
G

F

discovery | finishing time
0 |

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path
• Consider the same example, with

minor difference à

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
Nothing left to explore à empty stackà Halt
All nodes are visited, and we reach to the root

CS-3510: Design and Analysis of Algorithms | Summer 2022 87

A

E

B

C

D
G

F

discovery | finishing time
0 |13

1 |12

2 | 5

3 | 4

6 |11

7 | 10

8 | 9

Pop

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 88

A

E

B

C

D
G

F

! Demo code time!

A

E

B

C

D
G

F

Graph-1 Graph-2

Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 89

Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|)

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 90

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph Traversal: Connected Component
• Connected component problem. Find all nodes reachable from s.

• Upon termination, R is the connected component containing s.
• BFS
• DFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 91

References
• The lecture slides are mainly based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

92CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

