
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Greedy Algorithms

Announcements
• HW 3 is released; the submission deadline is extended for one week
• Due next Friday, June 17

• Exam on Thursday at 3:30
• Closed-book, one sheet of notes
• 80 minutes
• 5 main questions

• Q1: Asymptotic Notations
• Q2: Master Theorem
• Q3: Divide-and-Conquer
• Q4: Divide-and-Conquer
• Q5: Dynamic Programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 2

Roadmap

3CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Next Lecture!

Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Greedy Choice Property
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution

by making locally optimal choices.
• In other words, when we are considering which choice to make, we

make the choice that looks best in the current problem, without
considering results from subproblems.
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the

subproblem that remains.
• Makes its first choice before solving any subproblems.

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Difference with Dynamic Programming
• Dynamic programming:
• Make a choice at each step, but the choice usually depends on the solutions to

subproblems.
• Consequently, we typically solve dynamic-programming problems in a

bottom-up manner, progressing from smaller subproblems to larger
subproblems.
• Even in top-down approach, we use memoizing. So, even though the code

works top down, we still solve the subproblems before making a choice.
• Solves the subproblems before making the first choice.

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Greedy Algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

problem

subproblem

Subsub
problem

Subsub
problem

Divide-and-Conquer Dynamic Programming Greedy Approach

problem

subproblem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

problem

subproblem

Subsub
problem

Optimal substructure
But only one subproblem

Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal

substructure.

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

problem

subproblem

Subsub
problem

Greedy Algorithms
• Examples
• Interval scheduling (activity selection)
• Interval partitioning
• Schedule to minimize lateness
• …

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Greedy Example: (1) Interval Scheduling
• CLRS (16.1): Activity-selection problem
• KT (4.1): Interval-scheduling problem
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they

don’t overlap.
• Goal: find maximum subset of

mutually compatible jobs.

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Greedy Example: (1) Interval Scheduling
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.

• Greedy approach:
• Consider jobs in some natural order.
• Take each job provided it's compatible with the ones already taken

• [Earliest start time] Consider jobs in ascending order of sj.
• [Shortest interval] Consider jobs in ascending order of fj - sj.
• [Fewest conflicts] For each job j, count the number of conflicting jobs cj. Schedule in

ascending order of cj.
• [Earliest finish time] Consider jobs in ascending order of fj.

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Greedy Example: (1) Interval Scheduling
• Greedy approach:

× [Earliest start time]
Consider jobs in ascending order of sj.

× [Shortest interval]
Consider jobs in ascending order of fj - sj.

× [Fewest conflicts]
For each job j, count the number of conflicting jobs cj.
Schedule in ascending order of cj.

ü[Earliest finish time] Consider jobs in ascending order of fj.

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Counterexamples

Greedy Example: (1) Interval Scheduling
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they

don’t overlap.
• Goal: find maximum subset of

mutually compatible jobs.

• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Running time?
O(n) if sorted by finish time
O(nlogn) if it needs to be sorted first

Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is

compatible with the ones already taken.
• Natural order = finish time

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

But why this is optimal?

Greedy Example: (1) Interval Scheduling

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

Greedy Example: (1) Interval Scheduling

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Greedy Example: (1) Interval Scheduling

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

• In our greedy approach, we never rule out an optimal solution.
• We build the solution step-by-step by extending the last step.
• At the end of the algorithm, we obtain some solution. Thus, it must be optimal.
• Proof by induction

1. Base case: when we have no interval, there is an optimal solution extending that.
2. Inductive hypothesis: After adding the i-th interval to the current optimal solution, there is an

optimal solution that extends this current solution.
3. Inductive step: Exchange argument

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?

• No, counter example

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

100

1 1 1 1

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?

• No, counter example

• How to solve this problem?

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

100

1 1 1 1

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?

• No, counter-example

• How to solve this problem?
• Overlapping subproblems
• Dynamic programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

100

1 1 1 1

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?
• How to solve this problem?
• Overlapping subproblems
• Dynamic programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

p(j) = largest index i < j s.t. job i is compatible with j

[Extra Slide] Question:
• How to solve this problem?
• Overlapping subproblems
• Dynamic programming
• Ex. If each job is incompatible with only one earlier job, i.e., p(j) = j-2, then

T(n) = T(n-1) + T(n-2) + O(1) à grows like Fibonacci sequence

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a

subset of mutually compatible jobs giving the maximum total weights.
Does the greedy algorithm with the earliest-finish-time-first choice
still work?

• No à We need dynamic programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Greedy
choice?

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

earliest-start-time-first

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Greedy Algorithms Summary
• Build the solution step-by-step
• At each step, make a decision that is locally optimal
• Needs an especially nice optimal substructure

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and

complexity analysis. CRC Press.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

43CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Graph Algorithms:
Definitions and Representations

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Graph
• Applications
• Definitions
• Matrix Representation
• Directed Graphs
• Undirected Graphs
• Pros and Cons

• Linked List Representation
• Implementation

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

Graph: Applications
• Many problems can be represented by graphs
• Airline routes

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

http://virtualskies.arc.nasa.gov/research/tutorial/images/12routemap.gif

Graph: Applications
• Many problems can be represented by graphs
• Electric power grid

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

http://images.encarta.msn.com/xrefmedia/aencmed/targets/maps/map/000a5302.gif

Graph: Applications
• Many problems can be represented by graphs
• Networks

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

http://www.visualcomplexity.com/vc/images/270_big01.jpg http://ucsdnews.ucsd.edu/graphics/images/2007/07-07socialnetworkmapLG.jpg

Internet Social networks

Graph: Applications
• Social networks

• Friendships, family relationships, communications (email, phone), professional
groups, physical relationships (e.g., disease spread) etc.

• Information networks
• Citations among articles, world-wide-web (distinct from the physical communication

network), preference networks (e.g., Netflix)

• Biological networks
• Metabolic pathways, genetic regulatory networks, neural networks, food web

(predator-prey relationships)

• Technological networks
• Electric power grid, the Internet (physical computer communication network),

transportation networks (airline routes, road networks, etc.), electronic circuits, …

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Graph: Applications
• Routes in transportation networks
• Spread of diseases/trends/opinions
• Information propagation on the Internet (e.g., viral videos)
• Security (e.g., relationships among people)
• Cascading failures in the electric power grid
• Robustness of telecommunication networks
• Social dynamics (e.g., friendship, authorship, mentorship)
• Many others…

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Graph: Definition
• Graph = (V, E)

V = Vertex (node) set = {0, 1, 2, … n-1}
E = Edge (link) set = {e1, e2, … em} where ei = (vi, vj)
where vi and vj are vertices in V

• Directed vs. undirected graphs
• Degree(i): number of edges on node i
• In-degree (directed networks): number of incoming links
• Out-degree (directed networks): the number of outgoing links

• Often associate properties with vertices and/or links (e.g., distance)

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Representation: Adjacency Matrix
• Label nodes 0, 1, 2, … N-1
• Define matrix A[i, j]: (i, j, = 0, 1, … N-1)

= 1 if there is a link from node i to node j
= 0 if no link exists from i to j

• Alternatively, A[i,j] could represent a quantity
such as the distance (or cost, or time) from
node i to node j

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

4

0 1 2 3 4

3

2

1

0

- - 20 - -

- - 45 - 60

- - - - -

12 - - 55 -

- 25 15 - -

25

55

60

45

15

12

20

The blanks actually represent 0s

Representation: Adjacency Matrix
• Row i indicates the outgoing links for node i

• Column j indicates the incoming links for node j
• Here the entry indicates the length associated

with that link/edge

• Length of a 2-hop path from i to j via node k can
be computed as
A[i,k] + A[k,j] where i, j, and k are distinct
nodes and such a path existed

• Example: Length of path from 0 to 3 via node 1
is A[0,1]+A[1,3] = 25+55 = 80

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

4

0 1 2 3 4

3

2

1

0

- - 20 - -

- - 45 - 60

- - - - -

12 - - 55 -

- 25 15 - -

25

55

60

45

15

12

20

Adjacency Matrix: Undirected Graphs
• Special case of directed graphs
• For undirected graphs, each link represented by two edges, one in each

direction

• For undirected graphs, A is symmetric: A = AT

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

420

150

100

400

175

4

0 1 2 3 4

3

2

1

0

- - - 100 -

- 150 400 - 100

175 - - 400 -

420 - - 150 -

- 420 175 - -

Adjacency Matrix: Example
1. Draw the graph given by the adjacency matrix

𝐴 =

0 1 0
1 0 0
1 1 0

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 0
1 0 1
0 1 0

2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

v0 v1

v3 v2

150

200
35

40

310

Adjacency Matrix: Example
1. Draw the graph given by the adjacency matrix

𝐴 =

0 1 0
1 0 0
1 1 0

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 0
1 0 1
0 1 0

2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

v0 v1

v3v4

v5 v2

Adjacency Matrix: Example
2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

v0 v1

v3 v2

150

200
35

40

310

𝐴 =
0 150
150 0

200 35
0 40

200 0
35 40

0 310
310 0

Adjacency Matrix: Example
3. Is the adjacency matrix of a graph unique? Why or why not?

Once a vertex ordering has been specified, it is. But if we reorder the vertices,
the matrix may be different. For example, if row 1 corresponded to v2 and row 2
to v1, the matrix would be different.

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

v0 v1

v3 v2

150

200
35

40

310

𝐴 =
0 150
150 0

200 35
0 40

200 0
35 40

0 310
310 0

Adjacency Matrix: Pros & Cons
• Easy to determine quickly if there is a link between nodes i and j
• Space = N2 , where N = number of nodes
• Inefficient if graphs are sparse (usual case for large graphs)
• A graph with 1000 nodes will contain 1,000,000 array elements
• Most of these entries will be zero or “empty” for most graphs that arise in

practice (although there are ways to improve efficiency for such cases)
• For undirected graphs, information is duplicated

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Representation: Linked List
• Need a list of vertices; could be stored in a one-dimensional array
• For each vertex i
• Adj[i] is a list of vertices k where (i, k) ∈ E (neighbors of i)
• Order of nodes in adjacency list may/may not be important

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

3:100

0:

1:

2:

3:

4:420

150

100

400

175 4:100

3:400

0:420

1:420 2:175

3:150

0:175

1:150 2:400

Representation: Linked List
• Need a list of vertices; could be stored in a one-dimensional

array
• For each vertex i
• Adj[i] is a list of vertices k where (i, k) ∈ E (neighbors of i)
• Order of nodes in adjacency list may/may not be important

• Space?
• Amount of space is 2*E + N (E edges and N vertices)
• Preferred representation for sparse graphs
• Some effort to determine if there is a link between two vertices

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

3:100

0:

1:

2:

3:

4:

420

150

100

400

175

4:100

3:400

0:420

1:420 2:175

3:150

0:175

1:150 2:400

Representation: Linked List
• Store each list of edges as a linked list
• A[i] is a pointer to the list of edges to which node i connects

• Implementation issues/choices
• Sorted vs. unsorted list
• Operations: insert, delete, find
• Dynamic graphs that change in size (nodes, edges)

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

3:100

4:100 1:150 2:400

0

1

2

3

4

/

/

3:400 0:175 /

0:420 3:150 /

1:420 2:175 /

A[]

Adjacency List: Example
1. Draw the graph given by the adjacency list.

2. Use an adjacency list to represent the graph.

3. How can edge weights be represented with adjacency matrices/adjacency
lists? How about vertex weights?

4. What are some other ways you can think of to represent graphs?

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

2:20

0:

1:

2:

3:

4:

4:60

NIL

0:12

1:25 2:15

3:55

2:45

v0 v1

v3 v2

150

200
35

40

310

Adjacency List: Example
1. Draw the graph given by the adjacency list.

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

2:20

0:

1:

2:

3:

4:

4:60

NIL

0:12

1:25 2:15

3:55

2:45
25

55

60

45

15

12

20

Adjacency List: Example
2. Use an adjacency list to represent the graph.

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

v0 v1

v3 v2

150

200
35

40

310

0:35

0:

1:

2:

3:

0:200

0:150

3:35 1:150

3:310

2:310 1:40

2:200

3:40

Adjacency List: Example
3. How can edge weights be represented with adjacency matrices/adjacency

lists? How about vertex weights?
• Edge weights: With an adjacency matrix, edge weights can be the matrix entries. With

an adjacency list, edge weights can be stored with each neighbor node.
• Vertex weights: In either case, vertex weights may be best stored with the list of

vertices. This is easy for an adjacency list in particular. Note that vertex weights
cannot be included explicitly in an adjacency matrix.

4. What are some other ways you can think of to represent graphs?
• One idea: build from sparse matrix representations by using a list of ordered pairs to

represent edges (works for directed or undirected).
• Another option: an incidence matrix, with each vertex represented by a row and each

edge represented by a column, with nonzero entries for the two vertices associated
with each edge in that edge’s column.

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Graph: Summary
• Graphs arise in many application areas
• Two common ways to represent graphs

• Adjacency matrix
• Adjacency list (a type of sparse matrix)
• Both can be used to represent directed graphs

• Adjacency matrix
• Space: N2 elements for N vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of vertices
• Linked list implementation is typically used

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• Slides by Elizabeth Cherry, Georgia Institute of Technology.
• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third

Edition, MIT Press, 2009.
• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

26CS-3510: Design and Analysis of Algorithms | Summer 2022

