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Announcements
• HW 3 is released; the submission deadline is extended for one week
• Due next Friday, June 17

• Exam on Thursday at 3:30
• Closed-book, one sheet of notes
• 80 minutes
• 5 main questions

• Q1: Asymptotic Notations
• Q2: Master Theorem
• Q3: Divide-and-Conquer
• Q4: Divide-and-Conquer
• Q5: Dynamic Programming
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Roadmap
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We are here!

Next Lecture!



Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do
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Greedy Choice Property 
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution 

by making locally optimal choices. 
• In other words, when we are considering which choice to make, we 

make the choice that looks best in the current problem, without 
considering results from subproblems. 
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the 

subproblem that remains. 
• Makes its first choice before solving any subproblems. 
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Difference with Dynamic Programming
• Dynamic programming: 
• Make a choice at each step, but the choice usually depends on the solutions to 

subproblems. 
• Consequently, we typically solve dynamic-programming problems in a 

bottom-up manner, progressing from smaller subproblems to larger 
subproblems. 
• Even in top-down approach, we use memoizing. So, even though the code 

works top down, we still solve the subproblems before making a choice.
• Solves the subproblems before making the first choice.

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 6



Greedy Algorithms
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Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal 

substructure.
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Greedy Algorithms
• Examples
• Interval scheduling (activity selection)
• Interval partitioning
• Schedule to minimize lateness
• …

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)
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Greedy Example: (1) Interval Scheduling
• CLRS (16.1): Activity-selection problem
• KT (4.1): Interval-scheduling problem
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they

don’t overlap.
• Goal: find maximum subset of 

mutually compatible jobs. 
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Greedy Example: (1) Interval Scheduling
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs. 

• Greedy approach:
• Consider jobs in some natural order.
• Take each job provided it's compatible with the ones already taken 

• [Earliest start time] Consider jobs in ascending order of sj. 
• [Shortest interval] Consider jobs in ascending order of fj - sj. 
• [Fewest conflicts] For each job j, count the number of conflicting jobs cj. Schedule in 

ascending order of cj. 
• [Earliest finish time] Consider jobs in ascending order of fj. 
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Greedy Example: (1) Interval Scheduling
• Greedy approach:

× [Earliest start time] 
Consider jobs in ascending order of sj. 

× [Shortest interval] 
Consider jobs in ascending order of fj - sj. 

× [Fewest conflicts] 
For each job j, count the number of conflicting jobs cj. 
Schedule in ascending order of cj. 

ü[Earliest finish time] Consider jobs in ascending order of fj. 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 12

Counterexamples



Greedy Example: (1) Interval Scheduling
• Problem
• Job j starts at sj and finishes at fj.
• Two jobs are compatible if they

don’t overlap.
• Goal: find maximum subset of 

mutually compatible jobs. 

• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is 

compatible with the ones already taken. 
• Natural order = finish time
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Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is 

compatible with the ones already taken. 
• Natural order = finish time
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Greedy Example: (1) Interval Scheduling
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• Choose next job to add to solution as the one with earliest finish time that it is 

compatible with the ones already taken. 
• Natural order = finish time
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Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is 

compatible with the ones already taken. 
• Natural order = finish time
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Running time?
O(n) if sorted by finish time
O(nlogn) if it needs to be sorted first 



Greedy Example: (1) Interval Scheduling
• Greedy algorithm
• Choose next job to add to solution as the one with earliest finish time that it is 

compatible with the ones already taken. 
• Natural order = finish time
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But why this is optimal?



Greedy Example: (1) Interval Scheduling
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Greedy Example: (1) Interval Scheduling
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Greedy Example: (1) Interval Scheduling

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 28

• In our greedy approach, we never rule out an optimal solution.
• We build the solution step-by-step by extending the last step.
• At the end of the algorithm, we obtain some solution. Thus, it must be optimal.
• Proof by induction

1. Base case: when we have no interval, there is an optimal solution extending that.
2. Inductive hypothesis: After adding the i-th interval to the current optimal solution, there is an 

optimal solution that extends this current solution.
3. Inductive step: Exchange argument



[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?
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[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?

• No, counter example
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[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?

• No, counter example

• How to solve this problem?
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[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?

• No, counter-example

• How to solve this problem?
• Overlapping subproblems
• Dynamic programming
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[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?
• How to solve this problem?
• Overlapping subproblems
• Dynamic programming
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p(j) = largest index i < j s.t. job i is compatible with j 



[Extra Slide] Question:
• How to solve this problem?
• Overlapping subproblems
• Dynamic programming
• Ex. If each job is incompatible with only one earlier job, i.e., p(j) = j-2, then 

T(n) = T(n-1) + T(n-2) + O(1) à grows like Fibonacci sequence 
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[Extra Slide] Question:
• What if each job also has a positive weight and the goal is to select a 

subset of mutually compatible jobs giving the maximum total weights. 
Does the greedy algorithm with the earliest-finish-time-first choice 
still work?

• No à We need dynamic programming

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 35



Greedy Example: (2) Interval Partitioning

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 36



Greedy Example: (2) Interval Partitioning
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Greedy Example: (2) Interval Partitioning
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Greedy 
choice?



Greedy Example: (2) Interval Partitioning
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earliest-start-time-first 



Greedy Example: (2) Interval Partitioning
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Greedy Example: (2) Interval Partitioning
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Greedy Algorithms Summary
• Build the solution step-by-step
• At each step, make a decision that is locally optimal
• Needs an especially nice optimal substructure

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)
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Graph
• Applications
• Definitions
• Matrix Representation
• Directed Graphs
• Undirected Graphs
• Pros and Cons

• Linked List Representation
• Implementation
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Graph: Applications
• Many problems can be represented by graphs
• Airline routes
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Graph: Applications
• Many problems can be represented by graphs
• Electric power grid
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Graph: Applications
• Many problems can be represented by graphs
• Networks
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Graph: Applications
• Social networks

• Friendships, family relationships, communications (email, phone), professional 
groups, physical relationships (e.g., disease spread) etc.

• Information networks
• Citations among articles, world-wide-web (distinct from the physical communication 

network), preference networks (e.g., Netflix)

• Biological networks
• Metabolic pathways, genetic regulatory networks, neural networks, food web 

(predator-prey relationships)

• Technological networks
• Electric power grid, the Internet (physical computer communication network), 

transportation networks (airline routes, road networks, etc.), electronic circuits, …
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Graph: Applications
• Routes in transportation networks
• Spread of diseases/trends/opinions
• Information propagation on the Internet (e.g., viral videos)
• Security (e.g., relationships among people)
• Cascading failures in the electric power grid
• Robustness of telecommunication networks
• Social dynamics (e.g., friendship, authorship, mentorship)
• Many others…

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 8



Graph: Definition
• Graph = (V, E)

V = Vertex (node) set = {0, 1, 2, … n-1}
E = Edge (link) set = {e1, e2, … em} where ei = (vi, vj) 
where vi and vj are vertices in V

• Directed vs. undirected graphs
• Degree(i): number of edges on node i
• In-degree (directed networks): number of incoming links
• Out-degree (directed networks): the number of outgoing links

• Often associate properties with vertices and/or links (e.g., distance)
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Representation: Adjacency Matrix
• Label nodes 0, 1, 2, … N-1
• Define matrix A[i, j]: (i, j, = 0, 1, … N-1)

= 1 if there is a link from node i to node j
= 0 if no link exists from i to j

• Alternatively, A[i,j] could represent a quantity 
such as the distance (or cost, or time) from 
node i to node j
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Representation: Adjacency Matrix
• Row i indicates the outgoing links for node i

• Column j indicates the incoming links for node j
• Here the entry indicates the length associated 

with that link/edge

• Length of a 2-hop path from i to j via node k can 
be computed as 
A[i,k] + A[k,j] where i, j, and k are distinct 
nodes and such a path existed

• Example: Length of path from 0 to 3 via node 1 
is A[0,1]+A[1,3] = 25+55 = 80
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Adjacency Matrix: Undirected Graphs
• Special case of directed graphs
• For undirected graphs, each link represented by two edges, one in each 

direction

• For undirected graphs, A is symmetric: A = AT

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 12

420

150

100

400

175

4

0      1     2     3     4

3

2

1

0

- - - 100     -

- 150  400   - 100

175  - - 400    -

420  - - 150    -

- 420 175   - -



Adjacency Matrix: Example
1. Draw the graph given by the adjacency matrix 

𝐴 =

0 1 0
1 0 0
1 1 0

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 0
1 0 1
0 1 0

2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?
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Adjacency Matrix: Example
1. Draw the graph given by the adjacency matrix 

𝐴 =

0 1 0
1 0 0
1 1 0

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 0
1 0 1
0 1 0

2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?
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Adjacency Matrix: Example
2. Use an adjacency matrix to represent the graph.

3. Is the adjacency matrix of a graph unique? Why or why not?
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Adjacency Matrix: Example
3. Is the adjacency matrix of a graph unique? Why or why not?

Once a vertex ordering has been specified, it is. But if we reorder the vertices, 
the matrix may be different. For example, if row 1 corresponded to v2 and row 2 
to v1, the matrix would be different.

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 16

v0 v1

v3 v2

150

200
35

40

310

𝐴 =
0 150
150 0

200 35
0 40

200 0
35 40

0 310
310 0



Adjacency Matrix: Pros & Cons
• Easy to determine quickly if there is a link between nodes i and j
• Space = N2 , where N = number of nodes
• Inefficient if graphs are sparse (usual case for large graphs)
• A graph with 1000 nodes will contain 1,000,000 array elements
• Most of these entries will be zero or “empty” for most graphs that arise in 

practice (although there are ways to improve efficiency for such cases)
• For undirected graphs, information is duplicated
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Representation: Linked List 
• Need a list of vertices; could be stored in a one-dimensional array
• For each vertex i
• Adj[i] is a list of vertices k where (i, k) ∈ E (neighbors of i)
• Order of nodes in adjacency list may/may not be important
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Representation: Linked List 
• Need a list of vertices; could be stored in a one-dimensional 

array
• For each vertex i
• Adj[i] is a list of vertices k where (i, k) ∈ E (neighbors of i)
• Order of nodes in adjacency list may/may not be important

• Space?
• Amount of space is 2*E + N (E edges and N vertices)
• Preferred representation for sparse graphs
• Some effort to determine if there is a link between two vertices
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Representation: Linked List 
• Store each list of edges as a linked list
• A[i] is a pointer to the list of edges to which node i connects

• Implementation issues/choices
• Sorted vs. unsorted list
• Operations: insert, delete, find
• Dynamic graphs that change in size (nodes, edges)
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Adjacency List: Example
1. Draw the graph given by the adjacency list.

2. Use an adjacency list to represent the graph.

3. How can edge weights be represented with adjacency matrices/adjacency 
lists? How about vertex weights?

4. What are some other ways you can think of to represent graphs?
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Adjacency List: Example
1. Draw the graph given by the adjacency list.
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Adjacency List: Example
2. Use an adjacency list to represent the graph.
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Adjacency List: Example
3. How can edge weights be represented with adjacency matrices/adjacency 

lists? How about vertex weights?
• Edge weights: With an adjacency matrix, edge weights can be the matrix entries. With 

an adjacency list, edge weights can be stored with each neighbor node.
• Vertex weights: In either case, vertex weights may be best stored with the list of 

vertices. This is easy for an adjacency list in particular. Note that vertex weights 
cannot be included explicitly in an adjacency matrix.

4. What are some other ways you can think of to represent graphs?
• One idea: build from sparse matrix representations by using a list of ordered pairs to 

represent edges (works for directed or undirected). 
• Another option: an incidence matrix, with each vertex represented by a row and each 

edge represented by a column, with nonzero entries for the two vertices associated 
with each edge in that edge’s column.
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Graph: Summary
• Graphs arise in many application areas
• Two common ways to represent graphs

• Adjacency matrix
• Adjacency list (a type of sparse matrix)
• Both can be used to represent directed graphs

• Adjacency matrix
• Space: N2 elements for N vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of vertices
• Linked list implementation is typically used
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