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• Part 1
• Dynamic programming 

• Part 2:
• Exam 1 Review



Roadmap
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We are here!

Next Thursday!



Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 4

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The 
subproblems do 
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)



Dynamic Programming (DP)
• Dynamic Programming               vs.               Divide-and-Conquer
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Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler 

subproblems
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Recursive
with 
memoization

Iterative



Dynamic Programming (DP)
• Dynamic Programming Elements

• DP often (not always!) applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• “Optimal substructure”
• Finding the optimal solution involves finding the optimal solution to 

subproblems
• The subproblems are the same as the original problem, but are “smaller” 

(e.g., involve smaller-sized input data) Similar to D&C
• “Overlapping subproblems”  Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization
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Dynamic Programming (DP)
• Dynamic Programming  Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be 
constructed from optimal solutions to subproblems (This step is concluded by 
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many 
times but note the total number of distinct subproblems is polynomial (Recall the 
recursion tree for Fibonacci and Rod-cutting problems, where the total number of 
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only 
once and reuses the stored result all other times (This can be done by using either 
top-down (recursive+memoization) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 8



DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack
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DP Example: (5) LCS (continue)
• Given two sequences:

X = <x1, x2, … xm>
Y = <y1, y2, … yn>

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:
X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A>

<B, C, A> is a common subsequence of X and Y
<B, C, A, B> is an LCS of X and Y
<B, C, B, A> and <B, D, A, B> are also LCS’s of X and Y 
(LCS may not be unique!)
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DP Example: (5) LCS (continue)

• Given a sequence: X = <x1, x2, … xm>
Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m 
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>
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• Key Observation:
• The LCS of sequences X and Y can be found by 

finding the LCS of prefixes of X and Y

• This leads to development of a recursive 
solution to computing LCS



DP Example: (5) LCS (continue)

• Compute the length of the LCS
• Involves computing LCS 

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)
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If (xm == yn): 
§zk = xm; 
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j]  = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj



LCS: Computation

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 13

• c[i,j]  = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)

for (j=1; j<=n; j++)
if (xi==yj) c[i][j]=c[i-1][j-1]+1;
// c[i][j]=max(c[i-1][j],c[i][j-1])
else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
else: c[i][j] = c[i][j-1];



LCS: Example
Determine longest common subsequence of X and Y
• X = ABCB
• Y = BDCAB
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LCS(X, Y) = BCB
X = A B C B
Y =     B D C A B



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3        4         5
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i
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1

22

1 1 2 2 3
Length of LCS!



• The previous step determined the length of LCS, but not the LCS itself.
• Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
• For each c[i,j] we can record how it was acquired:

LCS: Computing the LCS
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if (xi==yj)
c[i][j]=
c[i-1][j-1]+1;
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else if (c[i-1][j] 
>= c[i][j-1])

c[i][j] = c[i-1][j];

else c[i][j] = 
c[i][j-1];
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“F”=found “X”=advance X “Y”=advance Y



LCS: Computing the LCS
• Remember that

• So, we can start from c[m,n] and go backwards
• Whenever c[i,j] = c[i-1, j-1]+1, remember x[i]   (because x[i] is a part 

of the LCS computed)
• When i=0 or j=0 (i.e., we reached the beginning), output the 

remembered letters in reverse order
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LCS: Computing the LCS
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;
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LCS: Computing the LCS

LCS (reversed order): B C B  à B C B (forward)
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

i
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LCS: Output (Printing) the LCS

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 20

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

// to print LCS, call Print_LCS:

Print_LCS(b, X, m, n);

// follow annotations to print out

Print_LCS(b, X, i, j):

if ((i==0) || (j==0)) return;

if (b[i][j] == “F”)

Print_LCS(b, X, i-1, j-1); 

print (x);

else if (b[i][j] == “X”)

Print_LCS(b, X, i-1, j);

else 

Print_LCS(b, X, i, j-1);



LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS

• Step 2: Printing
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LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS
• O(m×n) to fill in matrix

• Step 2: Printing
• O(m+n)
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DP Example: (6) Coin-changing*
• Problem: We want to make change for 𝑆 cents, and we have infinite 

supply of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the 
value of the 𝑖-th coin. What is the minimum number of coins required 
to reach value 𝑆? 
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* BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.



DP Example: (6) Coin-changing
• Problem: We want to make change for 𝑆 cents, and we have infinite supply 

of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the value of the 𝑖-
th coin. What is the minimum number of coins required to reach value 𝑆? 
• Choosing the maximum value first?

• Counter example: S=8, Coins=[6, 4, 1]
starting with max 𝑣! = 6 à S = 6 + 1 + 1 à 3 coins, 
but the optimum value is S = 4 + 4 à 2 coins

• Solving more subproblems
• Must be able to comeback to a choice already made and try another set of coins
• Choosing a coin affects choosing the rest of them
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DP Example: (6) Coin-changing
• Problem: We want to make change for 𝑆 cents, and we have infinite 

supply of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the 
value of the 𝑖-th coin. What is the minimum number of coins required 
to reach value 𝑆? 

• Define: 
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min -𝑂𝑃𝑇 𝑖 − 1, 𝑇 , i − th coin not used

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1, i − th coin used at least once
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DP Example: (6) Coin-changing
• Define: 
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min -𝑂𝑃𝑇 𝑖 − 1, 𝑇 , i − th coin not used

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1, i − th coin used at least once
• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0 no coins, cannot reach to S
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0 too much change given, exceeded the sum.
𝑂𝑃𝑇 𝑖, 0 = 0 means we are done!we"ve used enough coins to reach S.
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DP Example: (6) Coin-changing
• Define: 
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min /𝑂𝑃𝑇 𝑖 − 1, 𝑇

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1

• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0
𝑂𝑃𝑇 𝑖, 0 = 0

• Dynamic programming 
• Top-down
• Bottom-up
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… 𝑇 − 𝑣! … T

i-1 𝑂𝑃𝑇 𝑖 − 1, 𝑇

i 𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! 𝑂𝑃𝑇 𝑖, 𝑇

i+1
𝑂𝑃𝑇(𝑛, 𝑆)



DP Example: (6) Coin-changing
• Define: 
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to 
reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min /𝑂𝑃𝑇 𝑖 − 1, 𝑇

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1

• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0
𝑂𝑃𝑇 𝑖, 0 = 0

• Dynamic programming 
• Top-down
• Bottom-up
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Demo



DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack.”
• Item 𝑖 weights 𝑤$ > 0 and value 𝑣$ > 0
• Knapsack has weight capacity of 𝑊. 
• Goal: Pack knapsack such that the total

value is maximized.
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DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack.”
• Item 𝑖 weighs 𝑤& > 0 and value 𝑣& > 0
• Knapsack has weight capacity of 𝑊. 
• Goal: Pack knapsack such that the total

value is maximized.
• Examples

• {1, 2, 5} 
Total value = 1+6+28 = 35
Total weight = 1 + 2 + 7 = 10 ≤ 11

• {3, 4} 
Total value = 18+22 = 40
Total weight = 5+6 = 11 ≤ 11

• {3, 5} 
Total value = 18+28 = 46
Total weight = 5 + 7 = 12 ≰ 11
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Weight limit W = 11



DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total 
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)
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DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total 
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)
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We need to know both 
selected items and the 
remaining wight limit.



DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total 
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)
• 𝑂𝑃𝑇 𝑖, 𝑤 : optimal value with items 1, 2, … , 𝑖 subject to weight limit 𝑤
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We need to know both 
selected items and the 
remaining wight limit.



DP Example: (7) Knapsack
• Def: 𝑂𝑃𝑇 𝑖, 𝑤 = max profit subset of items 1, 2, … , 𝑖 with weight limit 𝑤
• Goal: 𝑂𝑃𝑇 𝑛,𝑊
• Possible cases:
• 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖 (because 𝑤! > 𝑤) à select best of 1, 2, …, 𝑖 − 1
• 𝑂𝑃𝑇 𝑖, 𝑤 selects item 𝑖à collect 𝑣!à new weight limit 𝑤 −𝑤!

• Recurrence relation:

𝑂𝑃𝑇 𝑖, 𝑤 = .
𝑂𝑃𝑇 𝑖 − 1,𝑤 if 𝑤! > 𝑤

max &𝑂𝑃𝑇 𝑖 − 1,𝑤
𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤! + 𝑣!

Otherwise

• Base case:
𝑂𝑃𝑇 0,𝑤 = 0
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DP Example: (7) Knapsack
• Def: 𝑂𝑃𝑇 𝑖, 𝑤 = max profit subset of items 1, 2, … , 𝑖 with weight limit 𝑤
• Goal: 𝑂𝑃𝑇 𝑛,𝑊
• Recurrence relation:
• Base case: 𝑂𝑃𝑇 0,𝑤 = 0
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… 𝑤 − 𝑤! … 𝑤

i-1 𝑂𝑃𝑇 𝑖 − 1
𝑤 − 𝑤! 𝑂𝑃𝑇 𝑖 − 1

𝑤

i
𝑂𝑃𝑇 𝑖

𝑤
i+1

𝑂𝑃𝑇(𝑛,𝑊)

𝑂𝑃𝑇 𝑖, 𝑤 = =
𝑂𝑃𝑇 𝑖 − 1, 𝑤 if 𝑤! > 𝑤

max /𝑂𝑃𝑇 𝑖 − 1, 𝑤
𝑂𝑃𝑇 𝑖 − 1, 𝑤 − 𝑤! + 𝑣!

Otherwise



DP Example: (7) Knapsack
• Dynamic Programming
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Complexity?
Time: Θ(𝑛𝑊)
Space: Θ(𝑛𝑊)



DP Example: (7) Knapsack
• Example
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DP: Summary
• Dynamic programming is a general algorithm approach similar to

divide and conquer, but with shared/overlapped subproblems rather 
than disjoint ones.

• Efficiency is obtained by recording (memoization) the solution of 
subproblems rather than recomputing them. 

• Dynamic programming applicable to many optimization problems
• Two main elements:
• Optimal substructure
• Overlapping subproblems
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complexity analysis. CRC Press.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. 
• Slides by Elizabeth Cherry, Georgia Institute of Technology.
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CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing 
Georgia Institute of Technology

Summer 2022

Exam 1: Review



Exam 1
•Date: Thursday, June 09, 2022
• Time: 03:30 pm – 05:00 pm
• Location: Klaus 2443

• Closed book; No calculator 
•One page sheet of notes

• Letter size
• Both sides
• Typed or hand-written
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Exam 1

• Contents:
•Asymptotic order of growth, time and space complexity

•Divide-and-conquer

•Dynamic programming
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Exam 1: Time Complexity
• Asymptotic Order of Growth
• It is easier to talk about the lower bound and upper bound of the running time.

• To practically deal with time complexity analysis, we use asymptotic notations.

• The asymptotic growth of a function (in this case T(n)) is specified using Θ, Ο, 
and Ω notations.

• Asymptotic means for “very large” input size, as n grows without bound or 
“asymptotically”.
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Exam 1: Time Complexity
• Asymptotic Order of Growth
• In general, the asymptotic notations define bounds on the growth of a function. 

Informally, a function 𝑓 𝑛 is:

• Ω(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic lower bound for 𝑓 𝑛

• Ο(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic upper bound for 𝑓 𝑛

• Θ(𝑔 𝑛 ) if 𝑔 𝑛 is an asymptotic tight bound for 𝑓 𝑛
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Exam 1: Time Complexity
• Asymptotic Order of Growth (Formal definition):
• Big Omega (lower bound):

f(n) is Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that 
f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• Big O (upper bound):
f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that 
0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• Big Theta (tight bound):  
f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0 
such that 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n) for all n ≥ n0. 
• Note: f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n))
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Exam 1: Time Complexity
• Big O Notation Properties

• So, we can ignore the lower terms and constants:

• Ex. f = 2n3 + 4n2 -5n + 1∈ O(n3)
• Ex. f = 4n5 ∈ O(n5)
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Reflexivity f is O(f)
Constants If f is O(g) and c > 0, then cf is O(g)
Products If f1 is O(g1) and f2 is O(g2), then f1 f2 is O(g1 g2)
Sums
(Additivity)

If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2})
Ex. If f1 ∈ O(n2) and f2 ∈ O(n4). Then, f1 + f2 ∈ O(n4)

Transitivity If f is O(g) and g is O(h), then f is O(h)



Exam 1: Time Complexity
• Asymptotic Bounds for Some Common Functions
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Polynomials f(n) = a0 + a1n + ... + adnd is Θ(nd) and thus, O(nd) if ad>0.

Logarithms loga n is Θ(logb n) for every a>1 and b>1.
Note: O(loga n) = O(logb n) (Recall logb n = logb a × loga n)

Logarithms vs polynomials loga n is O(nd) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials nd is O(rn) for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.



Asymptotic Order of Growth Hierarchy
𝑛)
𝑛!
3)
2)
𝑛*, 2𝑛*, 𝑛 − 1000 *, 𝑛* − 𝑛+

𝑛+, 2𝑛+, −1000𝑛+ + 𝑛, 100𝑛+ + log 𝑛
𝑛 log 𝑛
𝑛, 2𝑛, 1000𝑛, 10,-𝑛 + 1000
𝑛

log* 𝑛
log+ 𝑛
log 𝑛 , log+ 𝑛 , log* 𝑛 , log,---- 𝑛

log log 𝑛
1, 10, 1000, 𝐶
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𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔

𝑓(𝑛)

𝑓(𝑛)

𝑓 ∈ Ω 𝑔

𝑔(𝑛)

𝑓 𝑛 𝑓 ∈ Θ 𝑔 𝑔(𝑛)



Exam 1: Divide-and-Conquer (D&C)
• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time 
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.
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Exam 1: Divide-and-Conquer (D&C)
• Discussed examples:
• Binary-search

à Variant/applications of binary search
• Merge-sort

à Variant/applications of merge-sort
• Quick-sort

à Variant/applications of quick-sort
• Matrix multiplication

• Closest pair of points

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 50

Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:
- Variant (Design) /applications /parts of 

binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case
- Time and space complexity
- Complete the given incomplete solution



Exam 1: Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,  

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛./0" 1 , if 𝑎 > 𝑏2 (case 1)
Θ 𝑛2 log 𝑛 , if 𝑎 = 𝑏2 (case 2)
Θ 𝑛2 , if 𝑎 < 𝑏2 (case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇 )

+
+ 2)

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 51

Application of Master Theorem
- The recurrence relation is 

given à direct
- Dominated by

root/leaves/evenly
distributed

- An algorithm (D&C) is 
given, you need to find the 
recurrence first. Then, apply 
the Master Theorem à
indirect



Exam 1: Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer
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Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)



Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler 

subproblems
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DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack 
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Type of questions:
- Design a DP algorithm 
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity

Type of questions:
- Discuss the optimal substructure
- Recurrence given 
- Solving part of the problem
- Time and space complexity



Exam 1: Practice Problems
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