CS-3510: Design and Analysis of Algorithms

Dynamic Programming III

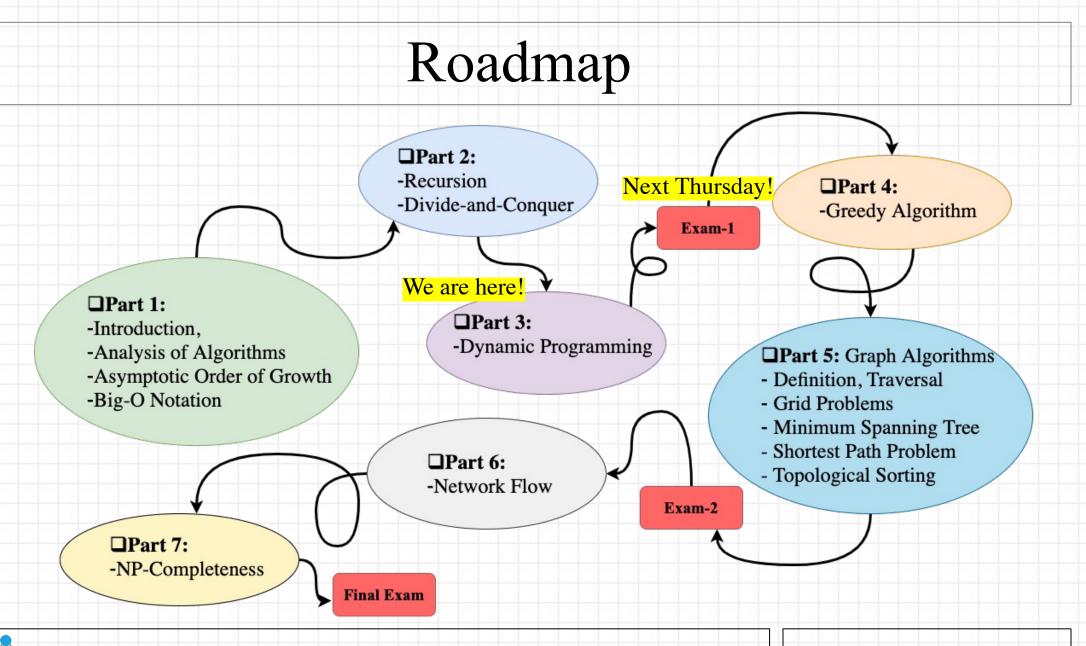
Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

Overview

- Part 1
 - Dynamic programming

- Part 2:
 - Exam 1 Review



CS-3510: Design and Analysis of Algorithms | Summer 2022

Dynamic Programming (DP)

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
 - Divide problem into subproblems
 - Recursively solve the subproblems and aggregate solutions <u>not overlap</u>

Dynamic Programming

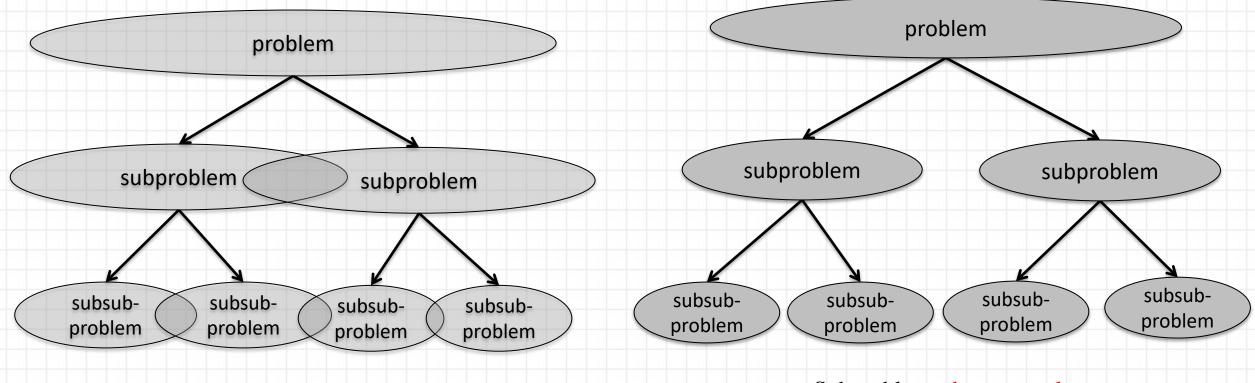
- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)

Note: The

subproblems do

Dynamic Programming (DP)

• Dynamic Programming vs. Divide-and-Conquer



Subproblems overlap

Subproblems do not overlap

Dynamic Programming

- Top-down vs. Bottom-up Approach
 - "Top-down" dynamic programming
 - Begin with problem description
 - i.e., begin at root of tree and work downwards
 - Recursively subdivide problem into subproblems

• "Bottom-up" dynamic programming

- Start at the leaf nodes of tree, i.e., the base case(s).
- Build up solution to larger problem from solutions of the simpler subproblems

Recursive with memoization

Iterative

Dynamic Programming (DP)

- Dynamic Programming Elements
 - DP often (not always!) applicable to optimization problems
 - Large number of possible solutions
 - Must find the "best" one (maximum or minimum)
 - "Optimal substructure"
 - Finding the optimal solution involves finding the optimal solution to subproblems
 - The subproblems are the same as the original problem, but are "smaller" (e.g., involve smaller-sized input data) <u>Similar to D&C</u>
 - "Overlapping subproblems" Key difference to D&C
 - Different subproblems operate on the same input data
 - Allows exploitation of memoization

Dynamic Programming (DP)

• Dynamic Programming Recipe

- 1. Show the problem has <u>optimal substructure</u>, i.e., the optimal solution can be constructed from optimal solutions to subproblems (This step is concluded by writing the <u>recurrence relation</u> and its <u>base case</u>).
- 2. Show subproblems are <u>overlapping</u>, i.e., subproblems may be encountered many times but note the total number of <u>distinct subproblems</u> is polynomial (Recall the recursion tree for Fibonacci and Rod-cutting problems, where the total number of distinct subproblems was linear, i.e., O(n)).
- 3. Construct an algorithm that computes the optimal solution to each subproblem only once and reuses the stored result all other times (This can be done by using either top-down (recursive+memoization) or bottom-up (iterative) approach).
- 4. Analysis: show that <u>time and space complexity is polynomial</u>.

DP Examples

- One-dimensional
 - 1. Fibonacci sequence
 - 2. Staircase climbing
 - 3. Rod-cutting
 - 4. Red-black game
- Two-dimensional
 - 5. Longest common subsequence (LCS)
 - 6. Coin-changing
 - 7. Knapsack

DP Example: (5) LCS (continue)

• Given two sequences:

$$X = \langle x_1, x_2, \dots x_m \rangle$$

 $Y = \langle y_1, y_2, \dots y_n \rangle$

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y. Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:

 $X = \langle A, B, C, B, D, A, B \rangle \qquad Y = \langle B, D, C, A, B, A \rangle$

<B, C, A> is a common subsequence of X and Y

<B, C, A, B> is an LCS of X and Y

<B, C, B, A> and <B, D, A, B> are also LCS's of X and Y

(LCS may not be unique!)

CS-3510: Design and Analysis of Algorithms | Summer 2022

DP Example: (5) LCS (continue)

 Given a sequence: X = <x₁, x₂, ... x_m> X_i = <x₁, x₂, ... x_i> is defined as the ith prefix of X, i=0, 1, ...m (X_i is the first i elements of X)

- Example: X = <A, B, C, B>
- $X_0 = <>$
- $X_1 = <A>$
- X₂ = <A, B>
- $X_3 = <A, B, C>$
- $X_4 = \langle A, B, C, B \rangle$

- Key Observation:
- The LCS of sequences X and Y can be found by finding the LCS of prefixes of X and Y
- This leads to development of a recursive solution to computing LCS

DP Example: (5) LCS (continue)

- Compute the length of the LCS
 - Involves computing LCS of prefixes to X and Y
- Let $c[i,j] = LCS(X_i, Y_j)$

• Data structure used for memoization

If $(x_m == y_n)$: $z_k = x_m$; $compute LCS (X_{m-1}, Y_{n-1})$ Else:

compute LCS (X_{m-1}, Y) and LCS (X, Y_{n-1})
 pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and $x_i = y_j$ = max (c[i, j-1], c[i-1, j]) if i>0, j>0, and $x_i \neq y_j$

• c[m,n] is the length of LCS(X, Y)

CS-3510: Design and Analysis of Algorithms | Summer 2022

LCS: Computation

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and $x_i = y_j$ = max (c[i,j-1], c[i-1,j]) if i>0, j>0, and $x_i \neq y_i$

```
// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)
        for (j=1; j<=n; j++)
            if (x<sub>i</sub>==y<sub>j</sub>) c[i][j]=c[i-1][j-1]+1;
            // c[i][j]=max(c[i-1][j],c[i][j-1])
            else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
            else: c[i][j] = c[i][j-1];
```


LCS: Example

Determine longest common subsequence of X and Y

- X = ABCB
- Y = BDCAB

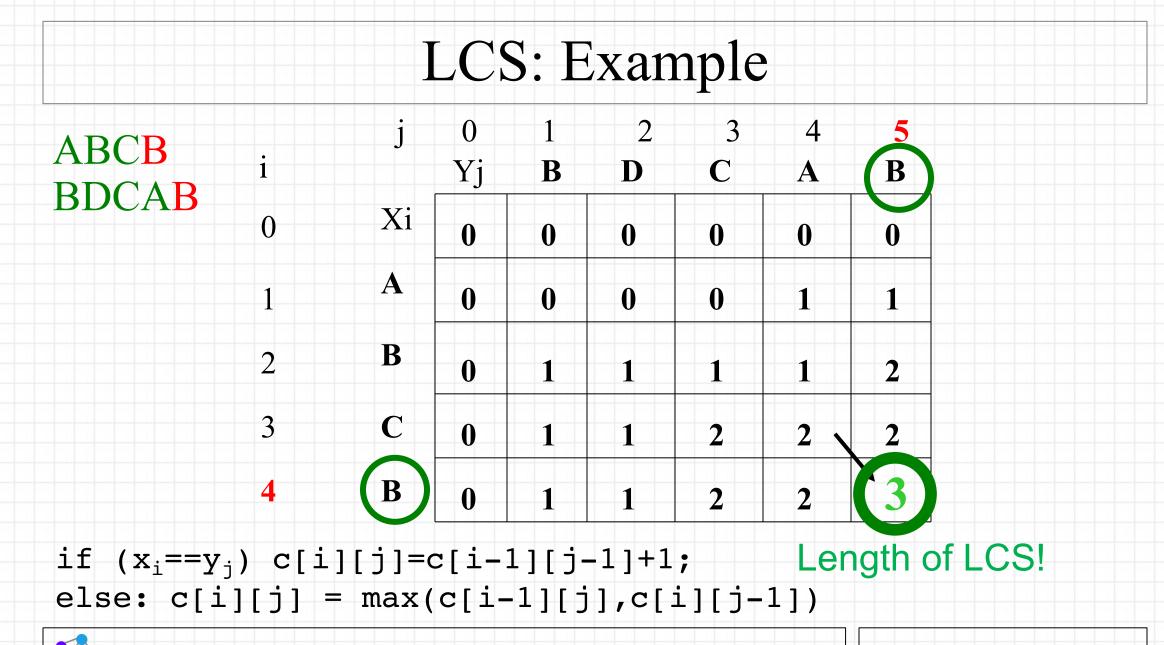
LCS: Example

Determine longest common subsequence of X and Y

• X = ABCB

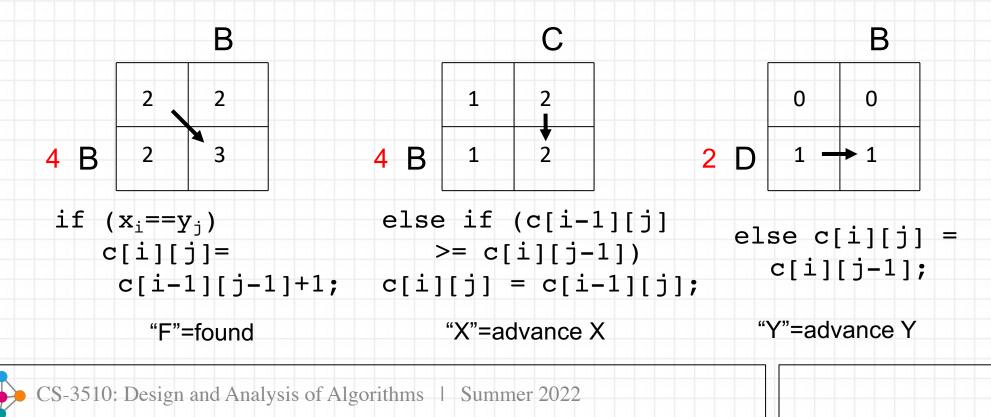
Y = BDCAB

LCS(X, Y) = BCBX = A B C BY = B D C A B



CS-3510: Design and Analysis of Algorithms | Summer 2022

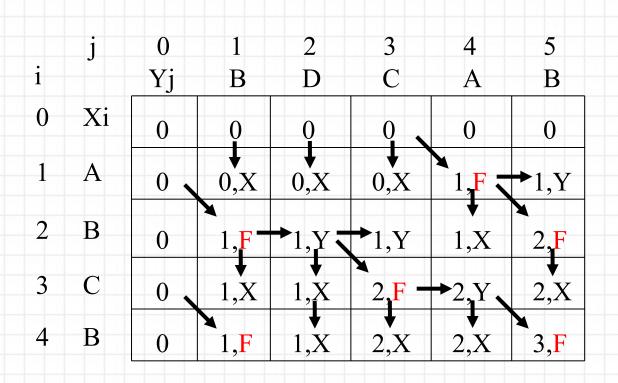
- The previous step determined the *length* of LCS, but not the LCS itself.
- Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
- For each c[i,j] we can record how it was acquired:



• Remember that

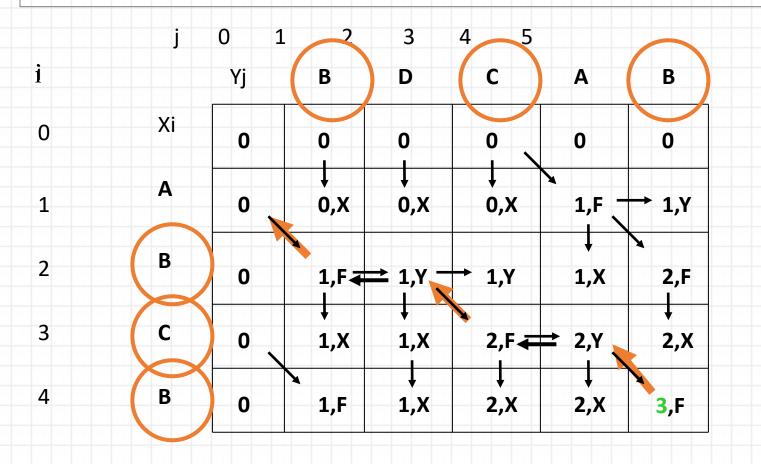
$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- So, we can start from *c[m,n]* and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of the LCS computed)
- When i=0 or j=0 (i.e., we reached the beginning), output the remembered letters in reverse order



annotate: found("F"), advance X("X"), advance Y("Y") for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if $(x_i = = y_j)$: c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y";

CS-3510: Design and Analysis of Algorithms | Summer 2022



annotate: found("F"), 11 advance X("X"), advance Y("Y") 11 for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if $(x_i = = y_i)$: c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y"; LCS (reversed order): B C B \rightarrow B C B (forward)

LCS: Output (Printing) the LCS

- // annotate: found("F"),
- // advance X("X"),advance Y("Y")
- for (i=1; i<=m; i++)</pre>
 - for (j=1; j<=n; j++)
 - if $(x_i == y_j)$:
 - c[i][j]=c[i-1][j-1]+1;
 - b[i][j]="F";
 - else if (c[i-1][j]>=c[i][j-1])
 - c[i][j] = c[i-1][j];
 - b[i][j]="X";
 - else
 - c[i][j] = c[i][j-1];
 - b[i][j]="Y";

```
// to print LCS, call Print LCS:
Print LCS(b, X, m, n);
// follow annotations to print out
Print_LCS(b, X, i, j):
 if ((i==0) || (j==0)) return;
  if (b[i][j] == "F")
   Print_LCS(b, X, i-1, j-1);
   print (x);
 else if (b[i][j] == "X")
   Print LCS(b, X, i-1, j);
 else
   Print LCS(b, X, i, j-1);
```


LCS: Running Time

- What is the execution time for each step of this algorithm?
 - Step 1: Computing LCS

• Step 2: Printing

LCS: Running Time

- What is the execution time for each step of this algorithm?
 - Step 1: Computing LCS
 - O(m×n) to fill in matrix
 - Step 2: Printing
 O(m+n)

• Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins = $[v_1, v_2, ..., v_n]$, where v_i is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?

* BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.

- Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins = $[v_1, v_2, ..., v_n]$, where v_i is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?
- Choosing the maximum value first?
 - Counter example: S=8, Coins=[6, 4, 1] starting with max v_i = 6 → S = 6 + 1 + 1 → 3 coins, but the optimum value is S = 4 + 4 → 2 coins
- Solving more subproblems
 - Must be able to comeback to a choice already made and try another set of coins
 - Choosing a coin affects choosing the rest of them

- Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins = $[v_1, v_2, ..., v_n]$, where v_i is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?
- Define: $OPT(i,T) = \min$ number of coins to reach $T \le S$ with the first *i* coints $i \le n$.
- Recurrence relation:

 $OPT(i,T) = \min \begin{cases} OPT(i-1,T) & , i - \text{th coin not used} \\ OPT(i,T-v_i) + 1, i - \text{th coin used at least once} \end{cases}$



- Define: $OPT(i,T) = \min number of coins to reach T \le S$ with the first *i* coints $i \le n$.
- Recurrence relation:

 $OPT(i,T) = \min \begin{cases} OPT(i-1,T) &, i - \text{th coin not used} \\ OPT(i,T-v_i) + 1, i - \text{th coin used at least once} \end{cases}$

• Base cases: $OPT(0,T) = +\infty$ if T > 0 no coins, cannot reach to S $OPT(i,T) = +\infty$ if T < 0 too much change given, exceeded the sum. OPT(i,0) = 0 means we are done! we've used enough coins to reach S.

• Define:

 $OPT(i, T) = \min$ number of coins to reach $T \leq S$ with the first *i* coints $i \leq n$.

• Recurrence relation: $OPT(i,T) = \min \begin{cases} OPT(i-1,T) \\ OPT(i,T-v_i) + 1 \end{cases}$ • Base cases: $OPT(0,T) = +\infty \text{ if } T > 0 \\ OPT(i,T) = +\infty \text{ if } T < 0 \\ OPT(i,0) = 0 \end{cases}$ i $OPT(i,T-v_i) \longrightarrow OPT(i,T)$

i+1

- Dynamic programming
 - Top-down
 - Bottom-up

OPT(n, S)

2

4

5

9

10

11

12

13

14 15

16

17

18

19

- Define: $OPT(i, T) = \min$ number of coins to reach $T \leq S$ with the first *i* coints $i \leq n$.
- Recurrence relation: $OPT(i,T) = \min \begin{cases} OPT(i-1,T) \\ OPT(i,T-v_i) + 1 \end{cases}$
- Base cases: $OPT(0,T) = +\infty$ if T > 0 $OPT(i,T) = +\infty$ if T < 0OPT(i,0) = 0
- Dynamic programming
 - Top-down
 - Bottom-up

```
1 def coin_change(coins, s):
   n = len(coins)
   # creating a 2D array
   opt = [[0] * (s+1) for _ in range(n+1)]
   # OPT(0, T) = +\infty
    for t in range(s+1):
     opt[0][t] = float("inf")
    for i in range(1, n+1):
    vi = coins[i-1]
     for t in range(1, s+1):
```

```
opt[i][t] = opt[i-1][t]
```

if t - vi >= 0:

opt[i][t] = min(opt[i][t], opt[i][t-vi]+1)

return opt[n][s]

Demo

- Given *n* items and a "knapsack."
- Item *i* weights $w_i > 0$ and value $v_i > 0$
- Knapsack has weight capacity of W.
- Goal: Pack knapsack such that the total value is maximized.

- Given *n* items and a "knapsack."
- Item *i* weighs $w_i > 0$ and value $v_i > 0$
- Knapsack has weight capacity of W.
- Goal: Pack knapsack such that the total value is maximized.
- Examples
 - $\{1, 2, 5\}$ Total value = 1+6+28 = 35 Total weight = 1 + 2 + 7 = $10 \le 11$
 - {3,4}
 - Total value = 18+22 = 40Total weight = $5+6 = 11 \le 11$
 - {3,5}

Total value = 18+28 = 46Total weight = $5 + 7 = 12 \le 11$

Weight limit W = 11

- Given *n* items and a "knapsack". Item *i* weighs $w_i > 0$ and value $v_i > 0$. Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
 - OPT(i): optimal value with items 1, 2, ..., $i \ (i \le n)$
 - OPT(w): optimal value with weight limit $w (w \le W)$

- Given *n* items and a "knapsack". Item *i* weighs $w_i > 0$ and value $v_i > 0$. Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
 - OPT(i): optimal value with items 1, 2, ..., $i \ (i \le n)$
 - OPT(w): optimal value with weight limit $w (w \le W)$

We need to know both selected items and the remaining wight limit.

- Given *n* items and a "knapsack". Item *i* weighs $w_i > 0$ and value $v_i > 0$. Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
 - OPT(i): optimal value with items 1, 2, ..., $i \ (i \le n)$
 - OPT(w): optimal value with weight limit $w (w \le W)$
 - OPT(i, w): optimal value with items 1, 2, ..., *i* subject to weight limit w

We need to know both selected items and the remaining wight limit.

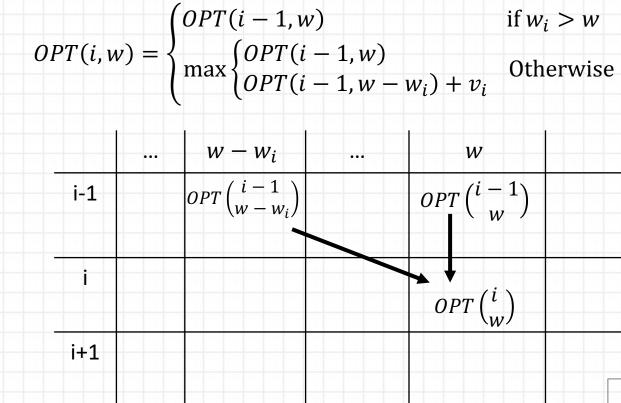
- Def: $OPT(i, w) = \max \text{ profit subset of items } 1, 2, ..., i \text{ with weight limit } w$
- Goal: OPT(n, W)
- Possible cases:
 - OPT(i, w) does not select item *i* (because $w_i > w$) \rightarrow select best of 1, 2, ..., i 1
 - OPT(i, w) selects item $i \rightarrow \text{collect } v_i \rightarrow \text{new weight limit } w w_i$
- Recurrence relation:

$$OPT(i,w) = \begin{cases} OPT(i-1,w) & \text{if } w_i > w \\ max \begin{cases} OPT(i-1,w) & \text{OPT}(i-1,w) \\ OPT(i-1,w-w_i) + v_i & \text{Otherwise} \end{cases}$$

• Base case:

$$OPT(0,w) = 0$$

- Def: $OPT(i, w) = \max \text{ profit subset of items } 1, 2, ..., i \text{ with weight limit } w$
- Goal: OPT(n, W) (OPT(i-1, w) if $w_i >$
- Recurrence relation:
- Base case: OPT(0, w) = 0



• Dynamic Programming

KNAPSACK $(n, W, w_1, ..., w_n, v_1, ..., v_n)$

 $OPT(i, w) = \begin{cases} 0 \\ OPT(i - 1, w) \\ \max \{ OPT(i - 1, w), v_i + OPT(i - 1, w - w_i) \} \end{cases}$ if $w_i > w$ otherwise

FOR w = 0 TO W

 $M[0,w] \leftarrow 0.$

previously computed values FOR i = 1 TO n

FOR w = 0 TO W

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

 $M[i,w] \leftarrow \max \{ M[i-1,w], v_i + M[i-1,w-w_i] \}.$ ELSE

Complexity? Time: $\Theta(nW)$ Space: $\Theta(nW)$

RETURN M[n, W].

if i = 0

DP Example: (7) Knapsack

	i	Vi	Wi		
• Example	1	\$1	1 kg	ſo	if $i = 0$
	2	\$6	2 kg	$OPT(i,w) = \begin{cases} OPT(i-1,w) \end{cases}$	if $w_i > w$
	3	\$18	5 kg	$\max \{ OPT(i - 1, w), v_i + OPT(i - 1, w - w_i) \}$	otherwise
	4	\$22	6 kg		
	5	\$28	7 kg		
				weight limit w	

		weight mint w											
		0	1	2	3	4	5	6	7	8	9	10	11
	{ }	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
subset of items	{ 1, 2 }	0 🔸		6	7	7	7	7	7	7	7	7	7
1,, i	{ 1, 2, 3 }	0	1	6	7	7	- 18 🗸	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	35	40

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

DP: Summary

- Dynamic programming is a general algorithm approach similar to divide and conquer, but with <u>shared/overlapped</u> subproblems rather than disjoint ones.
- Efficiency is obtained by recording (memoization) the solution of subproblems rather than recomputing them.
- Dynamic programming applicable to many optimization problems
- Two main elements:
 - Optimal substructure
 - Overlapping subproblems

References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
 - BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.
 - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
 - Slides by Elizabeth Cherry, Georgia Institute of Technology.

CS-3510: Design and Analysis of Algorithms

Exam 1: Review

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

Exam 1

- Date: Thursday, June 09, 2022
- Time: 03:30 pm 05:00 pm
- Location: Klaus 2443
- Closed book; No calculator
- One page sheet of notes
 - Letter size
 - Both sides
 - Typed or hand-written

Exam 1

- Contents:
 - Asymptotic order of growth, time and space complexity
 - Divide-and-conquer
 - Dynamic programming

- Asymptotic Order of Growth
 - It is easier to talk about the lower bound and upper bound of the running time.
 - To practically deal with time complexity analysis, we use asymptotic notations.
 - The asymptotic growth of a function (in this case T(n)) is specified using Θ , O, and Ω notations.
 - Asymptotic means for "very large" input size, as n grows without bound or "asymptotically".

• Asymptotic Order of Growth

- In general, the asymptotic notations define bounds on the growth of a function. Informally, a function *f*(*n*) is:
 - $\Omega(g(n))$ if g(n) is an asymptotic lower bound for f(n)
 - O(g(n)) if g(n) is an asymptotic upper bound for f(n)
 - $\Theta(g(n))$ if g(n) is an asymptotic tight bound for f(n)

- Asymptotic Order of Growth (Formal definition):
 - Big Omega (lower bound):

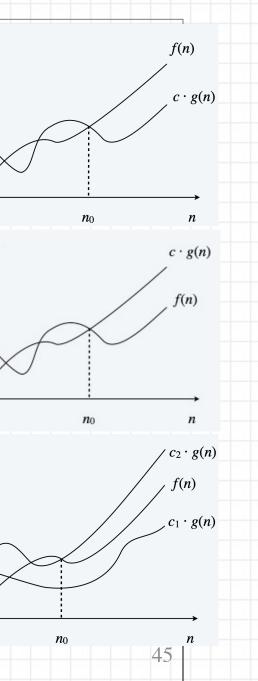
f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge cg(n) \ge 0$ for all $n \ge n_0$.

- **Big O (upper bound):** f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- Big Theta (tight bound):

f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

• Note: f(n) is $\Theta(g(n))$ iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

CS-3510: Design and Analysis of Algorithms | Summer 2022



• Big O Notation Properties

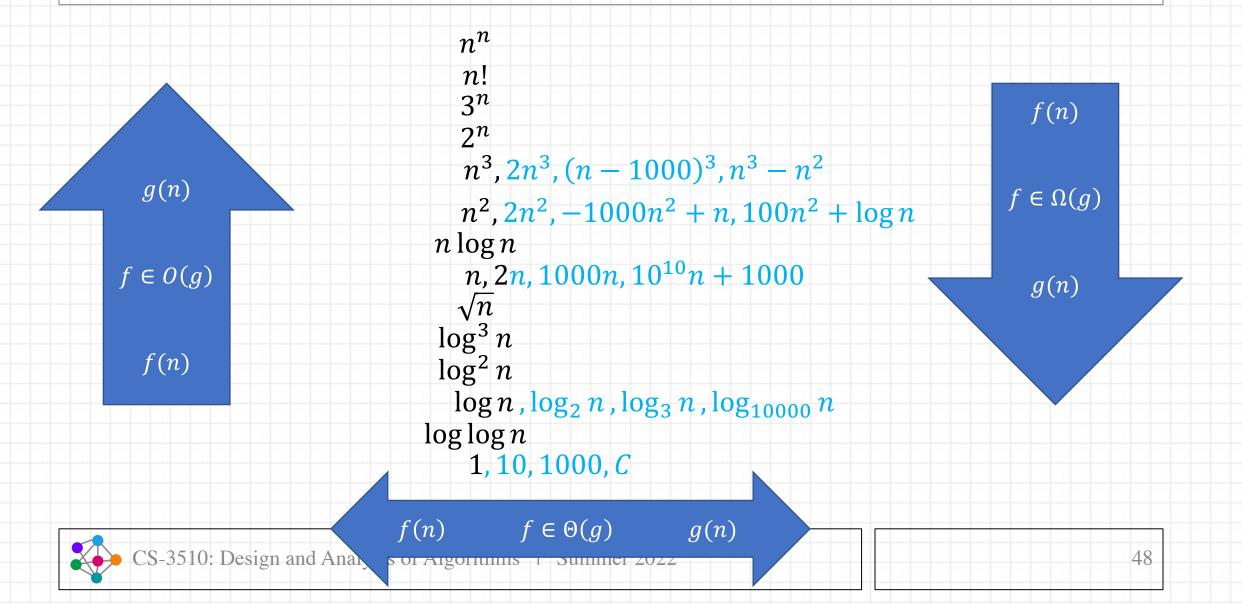
Reflexivity	f is $O(f)$
Constants	If f is $O(g)$ and $c > 0$, then cf is $O(g)$
Products	If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$
Sums (Additivity)	If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max \{g_1, g_2\})$ Ex. If $f_1 \in O(n^2)$ and $f_2 \in O(n^4)$. Then, $f_1 + f_2 \in O(n^4)$
Transitivity	If f is $O(g)$ and g is $O(h)$, then f is $O(h)$

- So, we can ignore the lower terms and constants:
 - Ex. $f = 2n^3 + 4n^2 5n + 1 \in O(n^3)$
 - Ex. $f = 4n^5 \in O(n^5)$

• Asymptotic Bounds for Some Common Functions

Polynomials	$f(n) = a_0 + a_1 n + \dots + a_d n^d \text{ is } \Theta(n^d) \text{ and thus, } O(n^d) \text{ if } a_d > 0.$
Logarithms	$log_a n is \Theta(log_b n) \text{ for every } a > 1 \text{ and } b > 1.$ Note: $O(log_a n) = O(log_b n) \text{ (Recall } log_b n = log_b a \times log_a n)$
Logarithms vs polynomials	$\log_a n$ is $O(n^d)$ for every $a>1$ and $d>0$. Logarithms grow slower than every polynomial regardless of how small d is.
Exponential vs Polynomials	n^d is O(r^n) for every $d>0$ and $r>1$. Exponentials grow faster than every polynomial regardless of how big d is.

Asymptotic Order of Growth Hierarchy



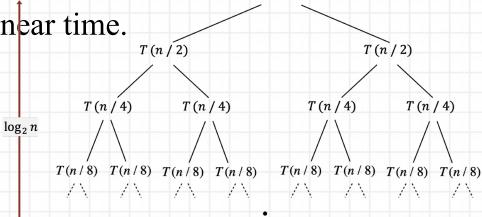
Exam 1: Divide-and-Conquer (D&C)

• Main steps

- Divide up problems into several subproblems (of the same type).
- Solve (conquer) each subproblem (usually recursively).
- Combine the solutions.

• Most common framework

- Divide the problem of size n into two subproblems of size n/2 in linear time
- Solve (conquer) the two subproblems recursively.
- Combine two solutions into overall solution in linear time.



T(n)

Exam 1: Divide-and-Conquer (D&C)

• Discussed examples:

- Binary-search
 - \rightarrow Variant/applications of binary search
- Merge-sort
 - \rightarrow Variant/applications of merge-sort
- Quick-sort
 - \rightarrow Variant/applications of quick-sort
- Matrix multiplication
- Closest pair of points

Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:

- <u>Variant (Design)</u> /<u>applications</u> /<u>parts</u> of binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case
- Time and space complexity
- Complete the given incomplete solution

Exam 1: Master Theorem

• Goal. Recipe for solving common divide-and-conquer recurrences, Application of Master Theorem $T(n) = a T\left(\frac{n}{r}\right) + f(n)$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

- The recurrence relation is given \rightarrow direct - Dominated by
 - root/leaves/evenly distributed
- An algorithm (D&C) is given, you need to find the recurrence first. Then, apply the Master Theorem \rightarrow indirect

- Limitation. Master theorem cannot be used if
 - T(n) is not monotone, e.g., T(n) = sin(n)
 - f(n) is not polynomial, e.g., $T(n) = 2T\left(\frac{n}{2}\right) + 2^n$
 - *b* cannot be expressed as a constant, e.g., $T(n) = a T(\sqrt{n}) + f(n)$

Exam 1: Dynamic Programming (DP)

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
 - Divide problem into subproblems
 - Recursively solve the subproblems and aggregate solutions

Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)

Dynamic Programming

- Top-down vs. Bottom-up Approach
 - "Top-down" dynamic programming
 - Begin with problem description
 - i.e., begin at root of tree and work downwards
 - Recursively subdivide problem into subproblems
 - "Bottom-up" dynamic programming
 - Start at the leaf nodes of tree, i.e., the base case(s).
 - Build up solution to larger problem from solutions of the simpler subproblems

DP Examples

• One-dimensional

- 1. Fibonacci sequence
- 2. Staircase climbing
- 3. Rod-cutting
- 4. Red-black game

• Two-dimensional

- 5. Longest common subsequence (LCS)
- 6. Coin-changing
- 7. Knapsack

Type of questions:

- Design a DP algorithm
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity

Type of questions:

- Discuss the optimal substructure
- Recurrence given
- Solving part of the problem
- Time and space complexity

Exam 1: Practice Problems

Course website

CS-3510 | Algorithms

home policies lectures assignments resources

[pur r tox r solution]

3	hw3:	06/03	06/10
	[pdf tex solution]		
4	hw4:	06/10	06/17
	[pdf tex solution]		
5	hw5:	06/17	07/08
	[pdf I tex I solution]		
6	hw6:	07/08	07/15
	[pdf I tex I solution]		

You can use this LaTeX template file to prepare your solutions on the cloud-based LaTeX editor OverLeaf.

#	Exam	Date (mm/dd)	Time (EST)	Location
1	Exam 1: Complexity, Devide-and-Conquer, Dynamic Programming [practice pdf solution]	06/09 Thursday	03:30 pm	Klaus 2443
2	Exam 2: Graph Algorithms [pdf l solution]	07/07 Thursday	03:30 pm	Klaus 2443
3	Final Exam: Inclusive (including all discussed topics) [practice I solution]	07/28 Thursday	03:00 pm	Klaus 2443

