# CS-3510: Design and Analysis of Algorithms

# Dynamic Programming III

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

#### Overview

- Part 1
  - Dynamic programming

- Part 2:
  - Exam 1 Review





CS-3510: Design and Analysis of Algorithms | Summer 2022

# Dynamic Programming (DP)

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
  - Divide problem into subproblems
  - Recursively solve the subproblems and aggregate solutions <u>not overlap</u>

#### Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)



Note: The

subproblems do

# Dynamic Programming (DP)

• Dynamic Programming vs. Divide-and-Conquer



Subproblems overlap

Subproblems do not overlap



# Dynamic Programming

- Top-down vs. Bottom-up Approach
  - "Top-down" dynamic programming
    - Begin with problem description
    - i.e., begin at root of tree and work downwards
    - Recursively subdivide problem into subproblems

• "Bottom-up" dynamic programming

- Start at the leaf nodes of tree, i.e., the base case(s).
- Build up solution to larger problem from solutions of the simpler subproblems

Recursive with memoization

Iterative



# Dynamic Programming (DP)

- Dynamic Programming Elements
  - DP often (not always!) applicable to optimization problems
    - Large number of possible solutions
    - Must find the "best" one (maximum or minimum)
  - "Optimal substructure"
    - Finding the optimal solution involves finding the optimal solution to subproblems
    - The subproblems are the same as the original problem, but are "smaller" (e.g., involve smaller-sized input data) <u>Similar to D&C</u>
  - "Overlapping subproblems" Key difference to D&C
    - Different subproblems operate on the same input data
    - Allows exploitation of memoization



# Dynamic Programming (DP)

#### • Dynamic Programming Recipe

- 1. Show the problem has <u>optimal substructure</u>, i.e., the optimal solution can be constructed from optimal solutions to subproblems (This step is concluded by writing the <u>recurrence relation</u> and its <u>base case</u>).
- 2. Show subproblems are <u>overlapping</u>, i.e., subproblems may be encountered many times but note the total number of <u>distinct subproblems</u> is polynomial (Recall the recursion tree for Fibonacci and Rod-cutting problems, where the total number of distinct subproblems was linear, i.e., O(n)).
- 3. Construct an algorithm that computes the optimal solution to each subproblem only once and reuses the stored result all other times (This can be done by using either top-down (recursive+memoization) or bottom-up (iterative) approach).
- 4. Analysis: show that <u>time and space complexity is polynomial</u>.



#### **DP** Examples

- One-dimensional
  - 1. Fibonacci sequence
  - 2. Staircase climbing
  - 3. Rod-cutting
  - 4. Red-black game
- Two-dimensional
  - 5. Longest common subsequence (LCS)
  - 6. Coin-changing
  - 7. Knapsack



## DP Example: (5) LCS (continue)

• Given two sequences:

$$X = \langle x_1, x_2, \dots x_m \rangle$$
  
 $Y = \langle y_1, y_2, \dots y_n \rangle$ 

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y. Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:

 $X = \langle A, B, C, B, D, A, B \rangle \qquad Y = \langle B, D, C, A, B, A \rangle$ 

<B, C, A> is a common subsequence of X and Y

<B, C, A, B> is an LCS of X and Y

<B, C, B, A> and <B, D, A, B> are also LCS's of X and Y

(LCS may not be unique!)

CS-3510: Design and Analysis of Algorithms | Summer 2022

#### DP Example: (5) LCS (continue)

 Given a sequence: X = <x<sub>1</sub>, x<sub>2</sub>, ... x<sub>m</sub>> X<sub>i</sub> = <x<sub>1</sub>, x<sub>2</sub>, ... x<sub>i</sub>> is defined as the i<sup>th</sup> prefix of X, i=0, 1, ...m (X<sub>i</sub> is the first i elements of X)

- Example: X = <A, B, C, B>
- $X_0 = <>$
- $X_1 = <A>$
- X<sub>2</sub> = <A, B>
- $X_3 = <A, B, C>$
- $X_4 = \langle A, B, C, B \rangle$

- Key Observation:
- The LCS of sequences X and Y can be found by finding the LCS of prefixes of X and Y
- This leads to development of a recursive solution to computing LCS

# DP Example: (5) LCS (continue)

- Compute the length of the LCS
  - Involves computing LCS of prefixes to X and Y
- Let  $c[i,j] = LCS(X_i, Y_j)$

• Data structure used for memoization

If  $(x_m == y_n)$ :  $z_k = x_m$ ;  $compute LCS (X_{m-1}, Y_{n-1})$ Else:

compute LCS (X<sub>m-1</sub>, Y) and LCS (X, Y<sub>n-1</sub>)
 pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and  $x_i = y_j$ = max (c[i, j-1], c[i-1, j]) if i>0, j>0, and  $x_i \neq y_j$ 

#### • c[m,n] is the length of LCS(X, Y)

CS-3510: Design and Analysis of Algorithms | Summer 2022

#### LCS: Computation

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and  $x_i = y_j$ = max (c[i,j-1], c[i-1,j]) if i>0, j>0, and  $x_i \neq y_i$ 

```
// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)
        for (j=1; j<=n; j++)
            if (x<sub>i</sub>==y<sub>j</sub>) c[i][j]=c[i-1][j-1]+1;
            // c[i][j]=max(c[i-1][j],c[i][j-1])
            else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
            else: c[i][j] = c[i][j-1];
```



#### LCS: Example

Determine longest common subsequence of X and Y

- X = ABCB
- Y = BDCAB

LCS: Example

Determine longest common subsequence of X and Y

• X = ABCB

Y = BDCAB

# LCS(X, Y) = BCBX = A B C BY = B D C A B





CS-3510: Design and Analysis of Algorithms | Summer 2022

- The previous step determined the *length* of LCS, but not the LCS itself.
- Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
- For each c[i,j] we can record how it was acquired:



• Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- So, we can start from *c[m,n]* and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of the LCS computed)
- When i=0 or j=0 (i.e., we reached the beginning), output the remembered letters in reverse order





annotate: found("F"), advance X("X"), advance Y("Y") for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if  $(x_i = = y_j)$ : c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y";

CS-3510: Design and Analysis of Algorithms | Summer 2022



annotate: found("F"), 11 advance X("X"), advance Y("Y") 11 for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if  $(x_i = = y_i)$ : c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y"; LCS (reversed order): B C B  $\rightarrow$  B C B (forward)



## LCS: Output (Printing) the LCS

- // annotate: found("F"),
- // advance X("X"),advance Y("Y")
- for (i=1; i<=m; i++)</pre>
  - for (j=1; j<=n; j++)
    - if  $(x_i == y_j)$ :
      - c[i][j]=c[i-1][j-1]+1;
      - b[i][j]="F";
    - else if (c[i-1][j]>=c[i][j-1])
      - c[i][j] = c[i-1][j];
      - b[i][j]="X";
    - else
      - c[i][j] = c[i][j-1];
      - b[i][j]="Y";

```
// to print LCS, call Print LCS:
Print LCS(b, X, m, n);
// follow annotations to print out
Print_LCS(b, X, i, j):
 if ((i==0) || (j==0)) return;
  if (b[i][j] == "F")
   Print_LCS(b, X, i-1, j-1);
   print (x);
 else if (b[i][j] == "X")
   Print LCS(b, X, i-1, j);
 else
   Print LCS(b, X, i, j-1);
```



#### LCS: Running Time

- What is the execution time for each step of this algorithm?
  - Step 1: Computing LCS

• Step 2: Printing



## LCS: Running Time

- What is the execution time for each step of this algorithm?
  - Step 1: Computing LCS
    - O(m×n) to fill in matrix
  - Step 2: Printing
    O(m+n)



• Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins =  $[v_1, v_2, ..., v_n]$ , where  $v_i$  is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?



\* BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.

- Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins =  $[v_1, v_2, ..., v_n]$ , where  $v_i$  is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?
- Choosing the maximum value first?
  - Counter example: S=8, Coins=[6, 4, 1] starting with max v<sub>i</sub> = 6 → S = 6 + 1 + 1 → 3 coins, but the optimum value is S = 4 + 4 → 2 coins
- Solving more subproblems
  - Must be able to comeback to a choice already made and try another set of coins
  - Choosing a coin affects choosing the rest of them



- Problem: We want to make change for S cents, and we have infinite supply of each coin in the set Coins =  $[v_1, v_2, ..., v_n]$ , where  $v_i$  is the value of the *i*-th coin. What is the minimum number of coins required to reach value S?
- Define:  $OPT(i,T) = \min$  number of coins to reach  $T \le S$  with the first *i* coints  $i \le n$ .
- Recurrence relation:

 $OPT(i,T) = \min \begin{cases} OPT(i-1,T) & , i - \text{th coin not used} \\ OPT(i,T-v_i) + 1, i - \text{th coin used at least once} \end{cases}$ 



- Define:  $OPT(i,T) = \min number of coins to reach T \le S$  with the first *i* coints  $i \le n$ .
- Recurrence relation:

 $OPT(i,T) = \min \begin{cases} OPT(i-1,T) &, i - \text{th coin not used} \\ OPT(i,T-v_i) + 1, i - \text{th coin used at least once} \end{cases}$ 

• Base cases:  $OPT(0,T) = +\infty$  if T > 0 no coins, cannot reach to S  $OPT(i,T) = +\infty$  if T < 0 too much change given, exceeded the sum. OPT(i,0) = 0 means we are done! we've used enough coins to reach S.

• Define:

 $OPT(i, T) = \min$  number of coins to reach  $T \leq S$  with the first *i* coints  $i \leq n$ .

• Recurrence relation:  $OPT(i,T) = \min \begin{cases} OPT(i-1,T) \\ OPT(i,T-v_i) + 1 \end{cases}$ • Base cases:  $OPT(0,T) = +\infty \text{ if } T > 0 \\ OPT(i,T) = +\infty \text{ if } T < 0 \\ OPT(i,0) = 0 \end{cases}$ i  $OPT(i,T-v_i) \longrightarrow OPT(i,T)$ 

i+1

- Dynamic programming
  - Top-down
  - Bottom-up



OPT(n, S)

2

4

5

9

10

11

12

13

14 15

16

17

18

19

- Define:  $OPT(i, T) = \min$  number of coins to reach  $T \leq S$  with the first *i* coints  $i \leq n$ .
- Recurrence relation:  $OPT(i,T) = \min \begin{cases} OPT(i-1,T) \\ OPT(i,T-v_i) + 1 \end{cases}$
- Base cases:  $OPT(0,T) = +\infty$  if T > 0 $OPT(i,T) = +\infty$  if T < 0OPT(i,0) = 0
- Dynamic programming
  - Top-down
  - Bottom-up

```
1 def coin_change(coins, s):
   n = len(coins)
   # creating a 2D array
   opt = [[0] * (s+1) for _ in range(n+1)]
   # OPT(0, T) = +\infty
    for t in range(s+1):
     opt[0][t] = float("inf")
    for i in range(1, n+1):
    vi = coins[i-1]
     for t in range(1, s+1):
```

```
opt[i][t] = opt[i-1][t]
```

if t - vi >= 0:

opt[i][t] = min(opt[i][t], opt[i][t-vi]+1)

#### return opt[n][s]



Demo

- Given *n* items and a "knapsack."
- Item *i* weights  $w_i > 0$  and value  $v_i > 0$
- Knapsack has weight capacity of W.
- Goal: Pack knapsack such that the total value is maximized.





- Given *n* items and a "knapsack."
- Item *i* weighs  $w_i > 0$  and value  $v_i > 0$
- Knapsack has weight capacity of W.
- Goal: Pack knapsack such that the total value is maximized.
- Examples
  - $\{1, 2, 5\}$ Total value = 1+6+28 = 35 Total weight = 1 + 2 + 7 =  $10 \le 11$
  - {3,4}
    - Total value = 18+22 = 40Total weight =  $5+6 = 11 \le 11$
  - {3,5}

Total value = 18+28 = 46Total weight =  $5 + 7 = 12 \le 11$ 





Weight limit W = 11



- Given *n* items and a "knapsack". Item *i* weighs  $w_i > 0$  and value  $v_i > 0$ . Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
  - OPT(i): optimal value with items 1, 2, ...,  $i \ (i \le n)$
  - OPT(w): optimal value with weight limit  $w (w \le W)$



- Given *n* items and a "knapsack". Item *i* weighs  $w_i > 0$  and value  $v_i > 0$ . Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
  - OPT(i): optimal value with items 1, 2, ...,  $i \ (i \le n)$
  - OPT(w): optimal value with weight limit  $w (w \le W)$

We need to know both selected items and the remaining wight limit.



- Given *n* items and a "knapsack". Item *i* weighs  $w_i > 0$  and value  $v_i > 0$ . Knapsack has weight capacity of *W*. Pack knapsack such that the total value is maximized.
- Possible subproblems?
  - OPT(i): optimal value with items 1, 2, ...,  $i \ (i \le n)$
  - OPT(w): optimal value with weight limit  $w (w \le W)$
  - OPT(i, w): optimal value with items 1, 2, ..., *i* subject to weight limit w

We need to know both selected items and the remaining wight limit.



- Def:  $OPT(i, w) = \max \text{ profit subset of items } 1, 2, ..., i \text{ with weight limit } w$
- Goal: OPT(n, W)
- Possible cases:
  - OPT(i, w) does not select item *i* (because  $w_i > w$ )  $\rightarrow$  select best of 1, 2, ..., i 1
  - OPT(i, w) selects item  $i \rightarrow \text{collect } v_i \rightarrow \text{new weight limit } w w_i$
- Recurrence relation:

$$OPT(i,w) = \begin{cases} OPT(i-1,w) & \text{if } w_i > w \\ max \begin{cases} OPT(i-1,w) & \text{OPT}(i-1,w) \\ OPT(i-1,w-w_i) + v_i & \text{Otherwise} \end{cases}$$

• Base case:

$$OPT(0,w) = 0$$

- Def:  $OPT(i, w) = \max \text{ profit subset of items } 1, 2, ..., i \text{ with weight limit } w$
- Goal: OPT(n, W) (OPT(i-1, w) if  $w_i >$
- Recurrence relation:
- Base case: OPT(0, w) = 0



• Dynamic Programming

**KNAPSACK** $(n, W, w_1, ..., w_n, v_1, ..., v_n)$ 

 $OPT(i, w) = \begin{cases} 0 \\ OPT(i - 1, w) \\ \max \{ OPT(i - 1, w), v_i + OPT(i - 1, w - w_i) \} \end{cases}$ if  $w_i > w$ otherwise

FOR w = 0 TO W

 $M[0,w] \leftarrow 0.$ 

previously computed values FOR i = 1 TO n

FOR w = 0 TO W

IF  $(w_i > w)$   $M[i, w] \leftarrow M[i-1, w]$ .

 $M[i,w] \leftarrow \max \{ M[i-1,w], v_i + M[i-1,w-w_i] \}.$ ELSE

Complexity? Time:  $\Theta(nW)$ Space:  $\Theta(nW)$ 

**RETURN** M[n, W].

if i = 0

## DP Example: (7) Knapsack

|           | i | Vi   | Wi   |                                                       |              |
|-----------|---|------|------|-------------------------------------------------------|--------------|
| • Example | 1 | \$1  | 1 kg | ſo                                                    | if $i = 0$   |
|           | 2 | \$6  | 2 kg | $OPT(i,w) = \begin{cases} OPT(i-1,w) \end{cases}$     | if $w_i > w$ |
|           | 3 | \$18 | 5 kg | $\max \{ OPT(i - 1, w), v_i + OPT(i - 1, w - w_i) \}$ | otherwise    |
|           | 4 | \$22 | 6 kg |                                                       |              |
|           | 5 | \$28 | 7 kg |                                                       |              |
|           |   |      |      | weight limit w                                        |              |

|                    |                   | weight mint w |   |   |   |   |        |    |    |    |    |    |    |
|--------------------|-------------------|---------------|---|---|---|---|--------|----|----|----|----|----|----|
|                    |                   | 0             | 1 | 2 | 3 | 4 | 5      | 6  | 7  | 8  | 9  | 10 | 11 |
|                    | { }               | 0             | 0 | 0 | 0 | 0 | 0      | 0  | 0  | 0  | 0  | 0  | 0  |
|                    | {1}               | 0             | 1 | 1 | 1 | 1 | 1      | 1  | 1  | 1  | 1  | 1  | 1  |
| subset<br>of items | { 1, 2 }          | 0 🔸           |   | 6 | 7 | 7 | 7      | 7  | 7  | 7  | 7  | 7  | 7  |
| 1,, i              | { 1, 2, 3 }       | 0             | 1 | 6 | 7 | 7 | - 18 🗸 | 19 | 24 | 25 | 25 | 25 | 25 |
|                    | { 1, 2, 3, 4 }    | 0             | 1 | 6 | 7 | 7 | 18     | 22 | 24 | 28 | 29 | 29 | 40 |
|                    | { 1, 2, 3, 4, 5 } | 0             | 1 | 6 | 7 | 7 | 18     | 22 | 28 | 29 | 34 | 35 | 40 |

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w



## DP: Summary

- Dynamic programming is a general algorithm approach similar to divide and conquer, but with <u>shared/overlapped</u> subproblems rather than disjoint ones.
- Efficiency is obtained by recording (memoization) the solution of subproblems rather than recomputing them.
- Dynamic programming applicable to many optimization problems
- Two main elements:
  - Optimal substructure
  - Overlapping subproblems



### References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
  - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
  - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
  - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
  - BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.
  - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
  - Slides by Elizabeth Cherry, Georgia Institute of Technology.



# CS-3510: Design and Analysis of Algorithms

## Exam 1: Review

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

#### Exam 1

- Date: Thursday, June 09, 2022
- Time: 03:30 pm 05:00 pm
- Location: Klaus 2443
- Closed book; No calculator
- One page sheet of notes
  - Letter size
  - Both sides
  - Typed or hand-written



#### Exam 1

- Contents:
  - Asymptotic order of growth, time and space complexity
  - Divide-and-conquer
  - Dynamic programming



- Asymptotic Order of Growth
  - It is easier to talk about the lower bound and upper bound of the running time.
  - To practically deal with time complexity analysis, we use asymptotic notations.
  - The asymptotic growth of a function (in this case T(n)) is specified using  $\Theta$ , O, and  $\Omega$  notations.
  - Asymptotic means for "very large" input size, as n grows without bound or "asymptotically".



#### • Asymptotic Order of Growth

- In general, the asymptotic notations define bounds on the growth of a function. Informally, a function *f*(*n*) is:
  - $\Omega(g(n))$  if g(n) is an asymptotic lower bound for f(n)
  - O(g(n)) if g(n) is an asymptotic upper bound for f(n)
  - $\Theta(g(n))$  if g(n) is an asymptotic tight bound for f(n)



- Asymptotic Order of Growth (Formal definition):
  - Big Omega (lower bound):

f(n) is  $\Omega(g(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  such that  $f(n) \ge cg(n) \ge 0$  for all  $n \ge n_0$ .

- **Big O (upper bound):** f(n) is O(g(n)) if there exist constants c > 0 and  $n_0 \ge 0$  such that  $0 \le f(n) \le cg(n)$  for all  $n \ge n_0$
- Big Theta (tight bound):

f(n) is  $\Theta(g(n))$  if there exist constants  $c_1 > 0$ ,  $c_2 > 0$ , and  $n_0 \ge 0$ such that  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  for all  $n \ge n_0$ .

• Note: f(n) is  $\Theta(g(n))$  iff f(n) is O(g(n)) and f(n) is  $\Omega(g(n))$ 

CS-3510: Design and Analysis of Algorithms | Summer 2022



#### • Big O Notation Properties

| Reflexivity          | f is $O(f)$                                                                                                                                                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constants            | If f is $O(g)$ and $c > 0$ , then cf is $O(g)$                                                                                                                         |
| Products             | If $f_1$ is $O(g_1)$ and $f_2$ is $O(g_2)$ , then $f_1 f_2$ is $O(g_1 g_2)$                                                                                            |
| Sums<br>(Additivity) | If $f_1$ is $O(g_1)$ and $f_2$ is $O(g_2)$ , then $f_1 + f_2$ is $O(\max \{g_1, g_2\})$<br>Ex. If $f_1 \in O(n^2)$ and $f_2 \in O(n^4)$ . Then, $f_1 + f_2 \in O(n^4)$ |
| Transitivity         | If $f$ is $O(g)$ and $g$ is $O(h)$ , then $f$ is $O(h)$                                                                                                                |

- So, we can ignore the lower terms and constants:
  - Ex.  $f = 2n^3 + 4n^2 5n + 1 \in O(n^3)$
  - Ex.  $f = 4n^5 \in O(n^5)$

#### • Asymptotic Bounds for Some Common Functions

| Polynomials                | $f(n) = a_0 + a_1 n + \dots + a_d n^d \text{ is } \Theta(n^d) \text{ and thus, } O(n^d) \text{ if } a_d > 0.$                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logarithms                 | $log_a n is \Theta(log_b n) \text{ for every } a > 1 \text{ and } b > 1.$<br>Note: $O(log_a n) = O(log_b n) \text{ (Recall } log_b n = log_b a \times log_a n)$ |
| Logarithms vs polynomials  | $\log_a n$ is $O(n^d)$ for every $a>1$ and $d>0$ .<br>Logarithms grow slower than every polynomial regardless of how small d is.                                |
| Exponential vs Polynomials | $n^d$ is O( $r^n$ ) for every $d>0$ and $r>1$ .<br>Exponentials grow faster than every polynomial regardless of how big d is.                                   |



### Asymptotic Order of Growth Hierarchy



## Exam 1: Divide-and-Conquer (D&C)

#### • Main steps

- Divide up problems into several subproblems (of the same type).
- Solve (conquer) each subproblem (usually recursively).
- Combine the solutions.

#### • Most common framework

- Divide the problem of size n into two subproblems of size n/2 in linear time
- Solve (conquer) the two subproblems recursively.
- Combine two solutions into overall solution in linear time.



T(n)



# Exam 1: Divide-and-Conquer (D&C)

#### • Discussed examples:

- Binary-search
  - $\rightarrow$  Variant/applications of binary search
- Merge-sort
  - $\rightarrow$  Variant/applications of merge-sort
- Quick-sort
  - $\rightarrow$  Variant/applications of quick-sort
- Matrix multiplication
- Closest pair of points

Search Algorithm

Sorting Algorithm

Sorting Algorithm

#### Type of questions:

- <u>Variant (Design)</u> /<u>applications</u> /<u>parts</u> of binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case
- Time and space complexity
- Complete the given incomplete solution



### Exam 1: Master Theorem

• Goal. Recipe for solving common divide-and-conquer recurrences, Application of Master Theorem  $T(n) = a T\left(\frac{n}{r}\right) + f(n)$ 

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

- The recurrence relation is given  $\rightarrow$  direct - Dominated by
  - root/leaves/evenly distributed
- An algorithm (D&C) is given, you need to find the recurrence first. Then, apply the Master Theorem  $\rightarrow$ indirect

- Limitation. Master theorem cannot be used if
  - T(n) is not monotone, e.g., T(n) = sin(n)
  - f(n) is not polynomial, e.g.,  $T(n) = 2T\left(\frac{n}{2}\right) + 2^n$
  - *b* cannot be expressed as a constant, e.g.,  $T(n) = a T(\sqrt{n}) + f(n)$

# Exam 1: Dynamic Programming (DP)

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
  - Divide problem into subproblems
  - Recursively solve the subproblems and aggregate solutions

#### Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)



# Dynamic Programming

- Top-down vs. Bottom-up Approach
  - "Top-down" dynamic programming
    - Begin with problem description
    - i.e., begin at root of tree and work downwards
    - Recursively subdivide problem into subproblems
  - "Bottom-up" dynamic programming
    - Start at the leaf nodes of tree, i.e., the base case(s).
    - Build up solution to larger problem from solutions of the simpler subproblems



## **DP** Examples

#### • One-dimensional

- 1. Fibonacci sequence
- 2. Staircase climbing
- 3. Rod-cutting
- 4. Red-black game

#### • Two-dimensional

- 5. Longest common subsequence (LCS)
- 6. Coin-changing
- 7. Knapsack

#### Type of questions:

- Design a DP algorithm
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity

#### Type of questions:

- Discuss the optimal substructure
- Recurrence given
- Solving part of the problem
- Time and space complexity



#### Exam 1: Practice Problems

#### Course website

#### CS-3510 | Algorithms

home policies lectures assignments resources

#### [ pur r tox r solution ]

| 3 | hw3:                     | 06/03 | 06/10 |
|---|--------------------------|-------|-------|
|   | [ pdf   tex   solution ] |       |       |
| 4 | hw4:                     | 06/10 | 06/17 |
|   | [ pdf   tex   solution ] |       |       |
| 5 | hw5:                     | 06/17 | 07/08 |
|   | [ pdf I tex I solution ] |       |       |
| 6 | hw6:                     | 07/08 | 07/15 |
|   | [ pdf I tex I solution ] |       |       |

#### You can use this LaTeX template file to prepare your solutions on the cloud-based LaTeX editor OverLeaf.

| # | Exam                                                                                             | Date<br>(mm/dd)   | Time (EST) | Location   |
|---|--------------------------------------------------------------------------------------------------|-------------------|------------|------------|
| 1 | Exam 1:<br>Complexity, Devide-and-Conquer, Dynamic<br>Programming<br>[practice   pdf   solution] | 06/09<br>Thursday | 03:30 pm   | Klaus 2443 |
| 2 | <b>Exam 2:</b><br>Graph Algorithms<br>[ pdf l solution]                                          | 07/07<br>Thursday | 03:30 pm   | Klaus 2443 |
| 3 | Final Exam:<br>Inclusive (including all discussed topics)<br>[ practice I solution]              | 07/28<br>Thursday | 03:00 pm   | Klaus 2443 |

