
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Dynamic Programming III

Overview

2CS-3510: Design and Analysis of Algorithms | Summer 2022

• Part 1
• Dynamic programming

• Part 2:
• Exam 1 Review

Roadmap

3CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Next Thursday!

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The
subproblems do
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

Subproblems overlap Subproblems do not overlap

Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler

subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Recursive
with
memoization

Iterative

Dynamic Programming (DP)
• Dynamic Programming Elements

• DP often (not always!) applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• “Optimal substructure”
• Finding the optimal solution involves finding the optimal solution to

subproblems
• The subproblems are the same as the original problem, but are “smaller”

(e.g., involve smaller-sized input data) Similar to D&C
• “Overlapping subproblems” Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Dynamic Programming (DP)
• Dynamic Programming Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be
constructed from optimal solutions to subproblems (This step is concluded by
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many
times but note the total number of distinct subproblems is polynomial (Recall the
recursion tree for Fibonacci and Rod-cutting problems, where the total number of
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only
once and reuses the stored result all other times (This can be done by using either
top-down (recursive+memoization) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

DP Example: (5) LCS (continue)
• Given two sequences:

X = <x1, x2, … xm>
Y = <y1, y2, … yn>

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:
X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A>

<B, C, A> is a common subsequence of X and Y
<B, C, A, B> is an LCS of X and Y
<B, C, B, A> and <B, D, A, B> are also LCS’s of X and Y
(LCS may not be unique!)

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

DP Example: (5) LCS (continue)

• Given a sequence: X = <x1, x2, … xm>
Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

• Key Observation:
• The LCS of sequences X and Y can be found by

finding the LCS of prefixes of X and Y

• This leads to development of a recursive
solution to computing LCS

DP Example: (5) LCS (continue)

• Compute the length of the LCS
• Involves computing LCS

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

If (xm == yn):
§zk = xm;
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

LCS: Computation

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

• c[i,j] = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)

for (j=1; j<=n; j++)
if (xi==yj) c[i][j]=c[i-1][j-1]+1;
// c[i][j]=max(c[i-1][j],c[i][j-1])
else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
else: c[i][j] = c[i][j-1];

LCS: Example
Determine longest common subsequence of X and Y
• X = ABCB
• Y = BDCAB

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

LCS(X, Y) = BCB
X = A B C B
Y = B D C A B

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3
Length of LCS!

• The previous step determined the length of LCS, but not the LCS itself.
• Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
• For each c[i,j] we can record how it was acquired:

LCS: Computing the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

2

2 3

2

if (xi==yj)
c[i][j]=
c[i-1][j-1]+1;

1

1 2

2 0

1 1

0

else if (c[i-1][j]
>= c[i][j-1])

c[i][j] = c[i-1][j];

else c[i][j] =
c[i][j-1];

B

B

C

B

B

D244

“F”=found “X”=advance X “Y”=advance Y

LCS: Computing the LCS
• Remember that

• So, we can start from c[m,n] and go backwards
• Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part

of the LCS computed)
• When i=0 or j=0 (i.e., we reached the beginning), output the

remembered letters in reverse order

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

î
í
ì

--
=+--

=
otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic
jyixjic

jic

LCS: Computing the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1,F

1,F

2,F

3,F

2,F

1,F 1,Y

2,Y

1,Y

0,X 0,X 0,X

1,X

1,X 1,X 2,X

1,X 2,X 2,X

1,Y

LCS: Computing the LCS

LCS (reversed order): B C B à B C B (forward)

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

i
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1,F0,X0,X0,X 1,Y

1,F 2,F1,Y 1,X

1,X 1,X 2,F

1,Y

2,X2,Y

1,F 1,X 2,X 2,XB 3,F

LCS: Output (Printing) the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

// to print LCS, call Print_LCS:

Print_LCS(b, X, m, n);

// follow annotations to print out

Print_LCS(b, X, i, j):

if ((i==0) || (j==0)) return;

if (b[i][j] == “F”)

Print_LCS(b, X, i-1, j-1);

print (x);

else if (b[i][j] == “X”)

Print_LCS(b, X, i-1, j);

else

Print_LCS(b, X, i, j-1);

LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS

• Step 2: Printing

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS
• O(m×n) to fill in matrix

• Step 2: Printing
• O(m+n)

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

DP Example: (6) Coin-changing*
• Problem: We want to make change for 𝑆 cents, and we have infinite

supply of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the
value of the 𝑖-th coin. What is the minimum number of coins required
to reach value 𝑆?

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

* BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.

DP Example: (6) Coin-changing
• Problem: We want to make change for 𝑆 cents, and we have infinite supply

of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the value of the 𝑖-
th coin. What is the minimum number of coins required to reach value 𝑆?
• Choosing the maximum value first?

• Counter example: S=8, Coins=[6, 4, 1]
starting with max 𝑣! = 6 à S = 6 + 1 + 1 à 3 coins,
but the optimum value is S = 4 + 4 à 2 coins

• Solving more subproblems
• Must be able to comeback to a choice already made and try another set of coins
• Choosing a coin affects choosing the rest of them

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

DP Example: (6) Coin-changing
• Problem: We want to make change for 𝑆 cents, and we have infinite

supply of each coin in the set Coins = [𝑣!, 𝑣", … , 𝑣#], where 𝑣$ is the
value of the 𝑖-th coin. What is the minimum number of coins required
to reach value 𝑆?

• Define:
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min -𝑂𝑃𝑇 𝑖 − 1, 𝑇 , i − th coin not used

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1, i − th coin used at least once

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

DP Example: (6) Coin-changing
• Define:
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min -𝑂𝑃𝑇 𝑖 − 1, 𝑇 , i − th coin not used

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1, i − th coin used at least once
• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0 no coins, cannot reach to S
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0 too much change given, exceeded the sum.
𝑂𝑃𝑇 𝑖, 0 = 0 means we are done!we"ve used enough coins to reach S.

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

DP Example: (6) Coin-changing
• Define:
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min /𝑂𝑃𝑇 𝑖 − 1, 𝑇

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1

• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0
𝑂𝑃𝑇 𝑖, 0 = 0

• Dynamic programming
• Top-down
• Bottom-up

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

… 𝑇 − 𝑣! … T

i-1 𝑂𝑃𝑇 𝑖 − 1, 𝑇

i 𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! 𝑂𝑃𝑇 𝑖, 𝑇

i+1
𝑂𝑃𝑇(𝑛, 𝑆)

DP Example: (6) Coin-changing
• Define:
𝑂𝑃𝑇(𝑖, 𝑇) = min number of coins to
reach 𝑇 ≤ 𝑆 with the first 𝑖 coints 𝑖 ≤ 𝑛.

• Recurrence relation:
𝑂𝑃𝑇 𝑖, 𝑇 = min /𝑂𝑃𝑇 𝑖 − 1, 𝑇

𝑂𝑃𝑇 𝑖, 𝑇 − 𝑣! + 1

• Base cases:
𝑂𝑃𝑇 0, 𝑇 = +∞ if 𝑇 > 0
𝑂𝑃𝑇 𝑖, 𝑇 = +∞ if 𝑇 < 0
𝑂𝑃𝑇 𝑖, 0 = 0

• Dynamic programming
• Top-down
• Bottom-up

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

Demo

DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack.”
• Item 𝑖 weights 𝑤$ > 0 and value 𝑣$ > 0
• Knapsack has weight capacity of 𝑊.
• Goal: Pack knapsack such that the total

value is maximized.

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack.”
• Item 𝑖 weighs 𝑤& > 0 and value 𝑣& > 0
• Knapsack has weight capacity of 𝑊.
• Goal: Pack knapsack such that the total

value is maximized.
• Examples

• {1, 2, 5}
Total value = 1+6+28 = 35
Total weight = 1 + 2 + 7 = 10 ≤ 11

• {3, 4}
Total value = 18+22 = 40
Total weight = 5+6 = 11 ≤ 11

• {3, 5}
Total value = 18+28 = 46
Total weight = 5 + 7 = 12 ≰ 11

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

Weight limit W = 11

DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

We need to know both
selected items and the
remaining wight limit.

DP Example: (7) Knapsack
• Given 𝑛 items and a “knapsack”. Item 𝑖 weighs 𝑤$ > 0 and value 𝑣$ >
0. Knapsack has weight capacity of 𝑊. Pack knapsack such that the total
value is maximized.

• Possible subproblems?
• 𝑂𝑃𝑇(𝑖): optimal value with items 1, 2, … , 𝑖 (𝑖 ≤ 𝑛)
• 𝑂𝑃𝑇 𝑤 : optimal value with weight limit 𝑤 (𝑤 ≤ 𝑊)
• 𝑂𝑃𝑇 𝑖, 𝑤 : optimal value with items 1, 2, … , 𝑖 subject to weight limit 𝑤

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

We need to know both
selected items and the
remaining wight limit.

DP Example: (7) Knapsack
• Def: 𝑂𝑃𝑇 𝑖, 𝑤 = max profit subset of items 1, 2, … , 𝑖 with weight limit 𝑤
• Goal: 𝑂𝑃𝑇 𝑛,𝑊
• Possible cases:
• 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖 (because 𝑤! > 𝑤) à select best of 1, 2, …, 𝑖 − 1
• 𝑂𝑃𝑇 𝑖, 𝑤 selects item 𝑖à collect 𝑣!à new weight limit 𝑤 −𝑤!

• Recurrence relation:

𝑂𝑃𝑇 𝑖, 𝑤 = .
𝑂𝑃𝑇 𝑖 − 1,𝑤 if 𝑤! > 𝑤

max &𝑂𝑃𝑇 𝑖 − 1,𝑤
𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤! + 𝑣!

Otherwise

• Base case:
𝑂𝑃𝑇 0,𝑤 = 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

DP Example: (7) Knapsack
• Def: 𝑂𝑃𝑇 𝑖, 𝑤 = max profit subset of items 1, 2, … , 𝑖 with weight limit 𝑤
• Goal: 𝑂𝑃𝑇 𝑛,𝑊
• Recurrence relation:
• Base case: 𝑂𝑃𝑇 0,𝑤 = 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

… 𝑤 − 𝑤! … 𝑤

i-1 𝑂𝑃𝑇 𝑖 − 1
𝑤 − 𝑤! 𝑂𝑃𝑇 𝑖 − 1

𝑤

i
𝑂𝑃𝑇 𝑖

𝑤
i+1

𝑂𝑃𝑇(𝑛,𝑊)

𝑂𝑃𝑇 𝑖, 𝑤 = =
𝑂𝑃𝑇 𝑖 − 1, 𝑤 if 𝑤! > 𝑤

max /𝑂𝑃𝑇 𝑖 − 1, 𝑤
𝑂𝑃𝑇 𝑖 − 1, 𝑤 − 𝑤! + 𝑣!

Otherwise

DP Example: (7) Knapsack
• Dynamic Programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

Complexity?
Time: Θ(𝑛𝑊)
Space: Θ(𝑛𝑊)

DP Example: (7) Knapsack
• Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

DP: Summary
• Dynamic programming is a general algorithm approach similar to

divide and conquer, but with shared/overlapped subproblems rather
than disjoint ones.

• Efficiency is obtained by recording (memoization) the solution of
subproblems rather than recomputing them.

• Dynamic programming applicable to many optimization problems
• Two main elements:
• Optimal substructure
• Overlapping subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and

complexity analysis. CRC Press.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
• Slides by Elizabeth Cherry, Georgia Institute of Technology.

39CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Exam 1: Review

Exam 1
•Date: Thursday, June 09, 2022
• Time: 03:30 pm – 05:00 pm
• Location: Klaus 2443

• Closed book; No calculator
•One page sheet of notes

• Letter size
• Both sides
• Typed or hand-written

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Exam 1

• Contents:
•Asymptotic order of growth, time and space complexity

•Divide-and-conquer

•Dynamic programming

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Exam 1: Time Complexity
• Asymptotic Order of Growth
• It is easier to talk about the lower bound and upper bound of the running time.

• To practically deal with time complexity analysis, we use asymptotic notations.

• The asymptotic growth of a function (in this case T(n)) is specified using Θ, Ο,
and Ω notations.

• Asymptotic means for “very large” input size, as n grows without bound or
“asymptotically”.

43CS-3510: Design and Analysis of Algorithms | Summer 2022

Exam 1: Time Complexity
• Asymptotic Order of Growth
• In general, the asymptotic notations define bounds on the growth of a function.

Informally, a function 𝑓 𝑛 is:

• Ω(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic lower bound for 𝑓 𝑛

• Ο(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic upper bound for 𝑓 𝑛

• Θ(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic tight bound for 𝑓 𝑛

44CS-3510: Design and Analysis of Algorithms | Summer 2022

Exam 1: Time Complexity
• Asymptotic Order of Growth (Formal definition):
• Big Omega (lower bound):

f(n) is Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• Big O (upper bound):
f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• Big Theta (tight bound):
f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
• Note: f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n))

45CS-3510: Design and Analysis of Algorithms | Summer 2022

Exam 1: Time Complexity
• Big O Notation Properties

• So, we can ignore the lower terms and constants:

• Ex. f = 2n3 + 4n2 -5n + 1∈ O(n3)
• Ex. f = 4n5 ∈ O(n5)

46CS-3510: Design and Analysis of Algorithms | Summer 2022

Reflexivity f is O(f)
Constants If f is O(g) and c > 0, then cf is O(g)
Products If f1 is O(g1) and f2 is O(g2), then f1 f2 is O(g1 g2)
Sums
(Additivity)

If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2})
Ex. If f1 ∈ O(n2) and f2 ∈ O(n4). Then, f1 + f2 ∈ O(n4)

Transitivity If f is O(g) and g is O(h), then f is O(h)

Exam 1: Time Complexity
• Asymptotic Bounds for Some Common Functions

47CS-3510: Design and Analysis of Algorithms | Summer 2022

Polynomials f(n) = a0 + a1n + ... + adnd is Θ(nd) and thus, O(nd) if ad>0.

Logarithms loga n is Θ(logb n) for every a>1 and b>1.
Note: O(loga n) = O(logb n) (Recall logb n = logb a × loga n)

Logarithms vs polynomials loga n is O(nd) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials nd is O(rn) for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.

Asymptotic Order of Growth Hierarchy
𝑛)
𝑛!
3)
2)
𝑛*, 2𝑛*, 𝑛 − 1000 *, 𝑛* − 𝑛+

𝑛+, 2𝑛+, −1000𝑛+ + 𝑛, 100𝑛+ + log 𝑛
𝑛 log 𝑛
𝑛, 2𝑛, 1000𝑛, 10,-𝑛 + 1000
𝑛

log* 𝑛
log+ 𝑛
log 𝑛 , log+ 𝑛 , log* 𝑛 , log,---- 𝑛

log log 𝑛
1, 10, 1000, 𝐶

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

𝑔(𝑛)

𝑓 ∈ 𝑂 𝑔

𝑓(𝑛)

𝑓(𝑛)

𝑓 ∈ Ω 𝑔

𝑔(𝑛)

𝑓 𝑛 𝑓 ∈ Θ 𝑔 𝑔(𝑛)

Exam 1: Divide-and-Conquer (D&C)
• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Exam 1: Divide-and-Conquer (D&C)
• Discussed examples:
• Binary-search

à Variant/applications of binary search
• Merge-sort

à Variant/applications of merge-sort
• Quick-sort

à Variant/applications of quick-sort
• Matrix multiplication

• Closest pair of points

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:
- Variant (Design) /applications /parts of

binary search, merge-sort, or quick-sort
- True/False questions
- Worst case/best case
- Time and space complexity
- Complete the given incomplete solution

Exam 1: Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛./0" 1 , if 𝑎 > 𝑏2 (case 1)
Θ 𝑛2 log 𝑛 , if 𝑎 = 𝑏2 (case 2)
Θ 𝑛2 , if 𝑎 < 𝑏2 (case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇)

+
+ 2)

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Application of Master Theorem
- The recurrence relation is

given à direct
- Dominated by

root/leaves/evenly
distributed

- An algorithm (D&C) is
given, you need to find the
recurrence first. Then, apply
the Master Theorem à
indirect

Exam 1: Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler

subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

DP Examples
• One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

• Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

Type of questions:
- Design a DP algorithm
- Discuss the optimal substructure
- Write the recurrence relation/base case
- Top-down / bottom-up
- Time and space complexity

Type of questions:
- Discuss the optimal substructure
- Recurrence given
- Solving part of the problem
- Time and space complexity

Exam 1: Practice Problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

Course website

