CS-3510:
Design and Analysis of Algorithms

Dynamic Programming 111

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Overview

* Part 1
* Dynamic programming

e Part 2:
e Exam 1 Review

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Roadmap

""JfElPart 2:

. Recursion Next Thursday! QPart 4:
~_ -Divide-and-Conquer - | -Greedy Algorithm

We are here! ¥ .
OPart 1:
-Introduction, /~ UPart 3: D\
-Analysis of Algorithms 7 \ -Dynamic Progr ammmg/) QPart 5: Graph Algorithm
-Asymptotic Order of Growth - Definition, Traversal
-Big-O Notation - Grid Problems
- Minimum Spanning Tree
1 - Shortest Path Problem

UPart 6:

-Network Flow - Topological Sorting

QPart 7:

-NP-Completeness -

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

Dynamic Programming (DP)

* Dynamic Programming vs. Divide-and-Conquer

Divide-and-Conquer: Note: The

subproblems do
* Recursively solve the subproblems and aggregate solutions not overlap

* Divide problem into subproblems

Dynamic Programming

* Divide problem into subproblems, recursively solve them
* Subproblems overlap

* When a subproblem has been solved, remember its solution and reuse that
solution rather than resolving it later (memoization)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Dynamic Programming (DP)

* Dynamic Programming Vs. Divide-and-Conquer

subproblem subproblem

subproblem - subproblem
I subsub- subsub- subsub- subsub-
problem problem problem problem

Subproblems overlap Subproblems do not overlap

subsub- ‘ subsub- subsu Y . subsub-
problem problem problem problem

Dynamic Programming

* Top-down vs. Bottom-up Approach

* “Top-down” dynamic programming

Recursive
* Begin with problem description with
* 1.e., begin at root of tree and work downwards T
. == . memoization
* Recursively subdivide problem into subproblems
* “Bottom-up” dynamic programmin .
2 &y 1oz S Iterative

 Start at the leaf nodes of tree, 1.e., the base case(s).

* Build up solution to larger problem from solutions of the simpler
subproblems

e
4

Dynamic Programming (DP)

* Dynamic Programming Elements

* DP often (not always!) applicable to optimization problems
* Large number of possible solutions
* Must find the “best” one (maximum or minimum)

* “Optimal substructure”

* Finding the optimal solution involves finding the optimal solution to
subproblems

* The subproblems are the same as the original problem, but are “smaller”
(e.g., involve smaller-sized input data) Similar to D&C

* “Overlapping subproblems” Key difference to D&C
 Different subproblems operate on the same input data
* Allows exploitation of memoization

v
L 4

Dynamic Programming (DP)

* Dynamic Programming Recipe
1. Show the problem has optimal substructure, i.e., the optimal solution can be

constructed from optimal solutions to subproblems (This step is concluded by
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.€., subproblems may be encountered many
times but note the total number of distinct subproblems is polynomial (Recall the
recursion tree for Fibonacci and Rod-cutting problems, where the total number of

distinct subproblems was linear, 1.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only
once and reuses the stored result all other times (This can be done by using either
top-down (recursive+memoization) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity i1s polynomial.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 8

DP Examples

* One-dimensional
1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting
4. Red-black game

* Two-dimensional
5. Longest common subsequence (LCS)
6. Coin-changing
7. Knapsack

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

DP Example: (5) LCS (continue)

* Given two sequences:

X =<Xi, X9y oor X~

Y =<y1, Y2, -+ Yo©
Z 1s a common subsequence of X and Y 1f Z 1s a subsequence of both X and Y.
Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:

X=<A,B,C,B,D,A, B> Y=<B,D,C,A, B, A>
<B, C, A>1s a common subsequence of X and Y
<B,C,A,B>1sanLCSof Xand Y
<B, C,B,A>and <B, D, A, B>are also LCS’sof X and Y
(LCS may not be unique!)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

10

DP Example: (5) LCS (continue)

* Given a sequence: X = <Xq, Xy, ... Xy
X, = <Xy, Xy, ... X> 18 defined as the i prefix of X, i=0, 1, ...m
(X 1s the first 1 elements of X)

113 * Key Observation:
Example: A= BrC B The LCS of sequences X and Y can be found by

TRGT finding the LCS of prefixes of X and Y
e X, = <A>

* X, =<A,B> This leads to development of a recursive
* X3=<A,B,(C> solution to computing LCS

.« X, =<A, B, C, B>

e
4

DP Example: (5) LCS (continue)

* Compute the length of the LCS If (Xin == ¥n):

. "Zi = Xms
* Involves computing LCS scompute LCS (X.. ;, Y, ;)
of prefixes to X and Y Else:
e [et C[i,j] - LCS(Xi, Yj) scompute LCS (X, ;,Y)and LCS (X,Y,)

 Data structure used for memoization "pick the longer subsequence of the two

* clij] =0,if (i=0 or j=0)
= C[i—l,j—l] + 1, if 1>O,J>O, and > ST y]
= max (c[i, j-1], ¢[i-1, j]) if i>0, >0, and x; # y;

* ¢c[m,n] 1s the length of LCS(X, Y)

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 12

LCS: Computation

* clij] =0,if (i=0 or j=0)
=c[i-1j-1] + 1,1t >0, j>0, and x; = y;
= max (c[i, j-1], ¢[i-1, j]) if i>0, j>0, and x; # y;

// compute LCS for 0 length cases

for (i=0; i<=m; i++) c[i,0]=0;

for (j=0; j<=n; j++) c[0,3]1=0;

// compute in row-major order

for (i=1l; i<=m; i++)

for (j=1; j<=n; j++)

if (x;==y;) cl[i][j]l=c[i-1][]-1]+1;
// c[i][j]l=max(c[i-1][j],c[i][]-1])
else if (c[i-1][j]>=c[i][]-1]1): c[i][]] =
else: c[i][]J] = c[i][]-1];

c[i-11[]1;

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

13

LCS: Example

Determine longest common subsequence of X and Y

« X =ABCB

« Y =BDCAB LCS: Example
Determine longest common subsequence of Xand Y
* X=ABCB

LCS(X,Y)=BCB = ‘Y=Eooe

X=AB C B

Y= BDCAB

% CS-3510: Design and Analysis of Algorithms | Summer 2022

14

LCS: Example

O 2N AT
0 Xl glolo oo | o
1 0 Y SN [T NI S NN (W |
2 M EL NI WA MEED SHIIE A
3 O S (I AT N /N W
4 0 | 1| 1 2 2 @
if (x;==y;3) c[i1][J]=c[1-1][]-1]+1; Length of LCS!

else: c[1][]J] = max(c[i-1][J],c[1]1[]-11)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

LCS: Computing the LCS

* The previous step determined the /ength of LCS, but not the LCS itself.
* Each c[i,j] depends on c[i-1,j] and c[1,j-1] or c[1-1, j-1]
* For each c[1,j] we can record how it was acquired:

B C B
2 2 1 2 0 0
N v
4B| 2 |3 GBI 2 D| 11
C[i][j]= >= C[i][j_l]) C[i][j_l].
c[1-11[]J-11+1; c[i][J] = c[i-1][3]1; '

“F*=found “X"=advance X “Y'=advance Y

v
L 4

LCS: Computing the LCS

e Remember that
i-1,j—1]+1 if x[i]= y[/],

cli, j]=+ e R .
max(cli, j—1],c[i—1,j]) otherwise

* So, we can start from ¢/m,n/ and go backwards

* Whenever c/i,j] = c[i-1, j-1]+1, remember x/i/] (because x/i/ 1s a part
of the LCS computed)

* When 1=0 or j=0 (1.¢., we reached the beginning), output the
remembered letters 1n reverse order

e
4

LCS: Computing the LCS

D |) 3 4 5

i Yi BT Pr €A B
T YN
T VN

04 0X| 0X | 0.X | 1LF LY

s

TR LR Y Y T X 2R

v ¥ v

3C o LX| 1LX | 2F2Y 2.X
N I

4 B | 0 | IF| 1,X | 2X | 2X | 3F

// annotate: found(“F"),
// advance X("“X"),advance Y(“Y")
for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
if (x;==Y;):
c[i][jl=c[i-1]1[j-1]+1;
b[i][]j]="F";
else if (c[i-1]1[j]l>=c[i][]j-1])
c[i][j] = c[i-11[]];
b[il[]j]="X";
else
c[i][]j] = c[il[3-1]1;
b[il[]j]="Y";

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

18

LCS: Computmg the LCS

j 0 1 v) 3 4 // annotate: found(“F"),
; Yi B D C A B // advance X(“X"),advance Y(“Y")

| . for (i=1; i<=m; i++)
0 e 0 0 0 0 0 for (j=1; j<=n; j++)

A i i i if (x;==y;):
1 0 Ny 0X | 0X | OX | LF 71y CIi][i1=e[i-1][§-1]+1;
2 : 0 LF&E2 1Y 1Y 1‘x 2,F RS NE =

1; 1: \ ’ ’ 1' else.lf.(c[l—l].[J]>fC[1][J-1])
3 C 0 1,X 1,X 2,F&= 2)Y 2,X i i iy i
i i i \\ b[i][]j]="X";
4 B | o LF| 1LX | 2X | 2X | 3F else
c[i][]j] = c[i][]j-1];

b[i][j1="¥";

LCS (reversed order): BC B > B C B (forward)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 19

LCS: Output (Printing) the LCS

// annotate: found(“F"),
// advance X(“X"),advance Y(“Y")
for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
if (x;==Y;):
c[i][j]=c[i-1][]j-1]+1;
b[i][]]="F";
else if (c[i-1][j]1>=c[i]l[]j-11)
c[i][j] = c[i-11[]];
b[i][]]="X";
else
c[il[j] = c[i][]-11;
b[i][]j]="Y";

// to print LCS, call Print LCS:
Print LCS(b, X, m, n);

// follow annotations to print out
Print LCS(b, X, i, j):
if ((i==0) || (j==0)) return;
if (b[i]1[3]1 == “F")
Print LCS(b, X, i-1, j-1);
print (x);
else if (b[i][]] == “X")
Print LCS(b, X, i-1, j);
else

Print LCS(b, X, i, j-1);

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

20

LCS: Running Time

* What 1s the execution time for each step of this algorithm?

* Step 1: Computing LCS

* Step 2: Printing

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

21

LCS: Running Time

* What 1s the execution time for each step of this algorithm?

* Step 1: Computing LCS

* O(mxn) to fill 1n matrix

* Step 2: Printing
* O(m+n)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

22

DP Example: (6) Coin-changing*

* Problem: We want to make change for S cents, and we have infinite
supply of each coin in the set Coins = [vq, v,, ..., V|, where v; is the
value of the i-th coin. What 1s the minimum number of coins required
to reach value S?

* BRV: Benoit, A., Robert, Y., & Vivien, F. (2013). A guide to algorithm design: paradigms, methods, and complexity analysis. CRC Press.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 23

DP Example: (6) Coin-changing

* Problem: We want to make change for S cents, and we have infinite supply
of each coin in the set Coins = [v4, V5, ..., V|, Where v; is the value of the i-
th coin. What i1s the minimum number of coins required to reach value S?

* Choosing the maximum value first?

* Counter example: S=8, Coins=[6, 4, 1]
starting with max v; =6 2> S=6+ 1+ 1 = 3 coins,
but the optimum value is S =4 + 4 = 2 coins

* Solving more subproblems
* Must be able to comeback to a choice already made and try another set of coins
* Choosing a coin affects choosing the rest of them

Y

DP Example: (6) Coin-changing

* Problem: We want to make change for S cents, and we have infinite
supply of each coin in the set Coins = [vq, v,, ..., V|, where v; is the
value of the i-th coin. What is the minimum number of coins required
to reach value S?

* Define:
OPT (i, T) = min number of coins to reach T < S with the first i coints i < n.

e Recurrence relation:

OPT(i,T) = min { OPT(i—1,T) ,1 — th coin not used

OPT(i,T —v;) + 1,i — th coin used at least once

%> CS-3510: Design and Analysis of Algorithms | Summer 2022 25

DP Example: (6) Coin-changing

e Define:

OPT (i, T) = min number of coins to reach T < S with the first i coints i < n.

e Recurrence relation:
OPT(i,T) = min { OPT(i—1,T) ,1 — th coin not used

OPT(i,T — v;) + 1,i — th coin used at least once

* Base cases:
OPT(0,T) = 4o if T>0 no coins,cannotreachto S
OPT(i,T) = +o if T <0 toomuch change given, exceeded the sum.
OPT(i,0) = 0 means we are done! we've used enough coins to reach S.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

26

DP Example: (6) Coin-changing

* Define:
OPT (i, T) = min number of coins to reach T < S with the first i coints i < n.

* Recurrence relation:

on . [OPT(-1,T)
OPT(i,T) = min {OPT(L', T—v;)+1

T — Vi T
* Base cases:
OPT(0,T) = 4o if T>0 i-1 OPT(i —1,T)
OPT(i,T) = 400 if T<O0 1
OPT(i,0) =0
; OPT(i,T — v;) » OPT(i,T)

* Dynamic programming

* Top-down i+1
 Bottom-up OPT(n,S)
@) CS-3510: Design and Analysis of Algorithms | Summer 2022 27

DP Example: (6) Coin-changing

i Deflnfl:: 1 def coin_change(coins, s):
OPT (i, T) = min number of coins to -
reach T < § with the first i coints i < n. 3 n = len(coins)
4
5 # creating a 2D array
* Recurrence relation: 6 opt = [[@] * (s+1) for _ in range(n+1)]
: T TORFG =1 R) 7
OPT(i,T) = min {OPT(i,T i) 8 #0PT(Q, T) = +»
9 for t in range(s+1):
» Base cases: 10 opt[@] [t] = float("inf")
OPT(0,T) = 4o if T>0 11
OPT(i,T) = 4+ if T<O 2 for i in range(1l, n+l):
OPT(i,0) =0 13 vi = coins[i-1]
14 for t in range(l, s+1):
15 opt[i] [t] = opt[i-1][t]
L . . 16 if t = vl >= 0:
Dynamic programming 17 opt[il [t] = min(opt[il [t], opt[i] [t-vil+1)
* Top-down 18
* Bottom-up 19 return optn][s]

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

28

DP Example: (7) Knapsack

* Given n items and a “knapsack.”
 Item { weights w; > 0 and value v; > 0
* Knapsack has weight capacity of W/

* Goal: Pack knapsack such that the total
value 1s maximized.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

29

DP Example: (7) Knapsack

* Given n items and a “knapsack.” i Vi Wi
* Item i weighs w; > 0 and value v; > 0
» Knapsack has weight capacity of /. 1 1 !
* Goal: Pack knapsack such that the total 2 6 2
value 1s maximized.
E 3 18 S
* Examples
* {1,2,5} 4 22 6
Total value = 1+64+28 = 35
Total weight =1+ 2 + 7 = [0'E11 5 28 7

* {3,4}
Total value = 18+22 =40
Total weight = 5+6 = IT =11
{35
Total value = 18+28 =46
Total weight =5 + 7 = | SN

Weight limit W = 11

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

30

DP Example: (7) Knapsack

* Given n items and a “knapsack”. Item i weighs w; > 0 and value v; >
0. Knapsack has weight capacity of W . Pack knapsack such that the total
value 1s maximized.

* Possible subproblems?
* OPT(i): optimal value with items 1, 2, ...,i (i < n)
* OPT(w): optimal value with weight limit w (w < W)

v
L 4

DP Example: (7) Knapsack

* Given n items and a “knapsack”. Item i weighs w; > 0 and value v; >
0. Knapsack has weight capacity of W . Pack knapsack such that the total
value 1s maximized.

* Possible subproblems?
* OPT(i): optimal value with items 1, 2, ...,i (i < n)
* OPT(w): optimal value with weight limit w (w < W)

We need to know both
selected 1items and the
remaining wight limit.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 32

DP Example: (7) Knapsack

* Given n items and a “knapsack”. Item i weighs w; > 0 and value v; >
0. Knapsack has weight capacity of W . Pack knapsack such that the total
value 1s maximized.

* Possible subproblems?

* OPT(i,w): optimal value with items 1, 2, ..., i subject to weight limit w

We need to know both
selected 1items and the
remaining wight limit.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 33

DP Example: (7) Knapsack

 Def: OPT (i, w) = max profit subset of items 1, 2, ..., i with weight limit w
e Goal: OPT(n,W)

* Possible cases:

* OPT(i,w) does not select item i (because w; > w) = selectbestof 1,2, ...,i — 1
* OPT(i,w) selects item i = collect v;=> new weight limit w — w;

e Recurrence relation:
(OPT(i — 1,w) ifw; >w

OPT(i,w) = OPT(i — 1,w) ,
max {OPT(i T W i Otherwise
\
e Base case:
OPT(O,w) =0

e
4

DP Example: (7) Knapsack

 Def: OPT (i, w) = max profit subset of items 1, 2, ..., i with weight limit w

* Goal: OPT(TI,, W) OPT(i —1,w) ifw, >w
e Recurrence relation: OPT(i;w) = x{gggg T 1:&) w4y Otherwise
-4 - Wi i
 Base case: orT(0,w) = 0
w—Ww; w
i orr (7 3) OPT(i;Vl)
. |
i \\ v _
l
OPT (W)
i+1
OPT (n, W)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 35

DP Example: (7) Knapsack

* Dynamic Programming (0 if i = 0

PT(2 =) . .
KNAPSACK (1, W, Wi, oov) Was VL oois Vi) O (i,w) = ¢ OPT(i - 1,w) if w; > w

max { OPT(i — 1,w), v; + OPT(i —1,w —w;) } otherwise

\

FOR w=0TO W
M[O,w] < 0.

) previously computed values
FOR i=1TOn

FOR w=0TO W / j \
IF Wi>w) M[i,w] < M[i-1,w].

ELSE M[i,w] < max {M[i-1,w], vi + M[i-1,w—wi] }. Complexity?
Time: O(nW)
RETURN M[n, W]. Space: O(nW)

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 36

DP Example: (7) Knapsack

* Example

Vi Wi
1 $1 1 kg 0 ifi=0
2 $6 2kg OPT(i,w) = { OPT(i—1,w) if w; > w
3 $18 S5kg max {OPT (i — 1,w), v; + OPT(i — 1,w —w;} otherwise
4 $22 6 kg
5 $28 7kg
weight limit w
o1 2 34 5 67 8 9 0 u
0 0 0 0 0 0 0 0 0 0 0 0
)
0 1 1 1 1 1 1 1 1 1 1 1
)
subset 0 6 7 7 7 7 7 4 7 Fi 7
of items

1,..,i

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

37

DP: Summary

* Dynamic programming 1s a general algorithm approach similar to
divide and conquer, but with shared/overlapped subproblems rather
than disjoint ones.

* Efficiency is obtained by recording (memoization) the solution of
subproblems rather than recomputing them.

* Dynamic programming applicable to many optimization problems

 Two main elements:
* Optimal substructure

* Overlapping subproblems

Y

References

* The lecture slides are heavily based on the suggested textbooks and the corresponding published
lecture notes:

 CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

» KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

* DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher
Education., 2008.

* BRV: Benott, A., Robert, Y., & Vivien, F. (2013). 4 guide to algorithm design: paradigms, methods, and
complexity analysis. CRC Press.

 Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
» Slides by Elizabeth Cherry, Georgia Institute of Technology.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 39

http://www.cs3510.com/policies/

CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Exam 1

* Date: Thursday, June 09, 2022
* Time: 03:30 pm — 05:00 pm
[ocation: Klaus 2443

* Closed book; No calculator

* One page sheet of notes

o Letter size
* Both sides
* Typed or hand-written

%> CS-3510: Design and Analysis of Algorithms | Summer 2022

41

Exam 1

* Contents:
* Asymptotic order of growth, time and space complexity
* Divide-and-conquer

* Dynamic programming

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

42

Exam 1: Time Complexity

* Asymptotic Order of Growth

* [t 1s easier to talk about the lower bound and upper bound of the running time.
* To practically deal with time complexity analysis, we use asymptotic notations.

* The asymptotic growth of a function (in this case T(n)) 1s specified using 0, O,
and () notations.

* Asymptotic means for “very large” input size, as n grows without bound or
“asymptotically”.

v
L 4

Exam 1: Time Complexity

* Asymptotic Order of Growth

* In general, the asymptotic notations define bounds on the growth of a function.

Informally, a function f(n) is:
* Q(g(n)) if g(n) is an asymptotic lower bound for f(n)
* 0(g(n)) if g(n) is an asymptotic upper bound for f(n)

* O(g(n)) if g(n) is an asymptotic tight bound for f(n)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

44

Exam 1: Time Complexity

c- g(n)

* Asymptotic Order of Growth (Formal definition):

* Big Omega (lower bound):
f(n) 1s 2(g(n)) 1f there exist constants ¢ > 0 and n, > 0 such that
f(n) > cg(n) >0 for all n > n,.

¢ g(n)

fin)
* Big O (upper bound):
f(n) 1s O(g(n)) 1f there exist constants ¢ > 0 and n, > 0 such that
0 <f(n) <cg(n) for all n > n,

| ﬁ& | R
(=] (=)
~] L S

c2- g(n)
* Big Theta (tight bound): f
f(n) 1s O(g(n)) 1 there exist constants ¢; >0, ¢, >0, and n,> 0

such that 0 <¢,g(n) < f(n) <c,g(n) for all n > n,,.
* Note: f(n) 1s O(g(n)) it f(n) 1s O(g(n)) and f(n) 1s 2(g(n))

ci - g(n)

Y

Exam 1: Time Complexity

* Big O Notation Properties

Reflexivity fis O(f)

Constants If fis O(g) and ¢ > 0, then cfis O(g)

Products If fi 1s O(gy) and f> is O(g,), then f; f> is O(g; g»)

Sums If f, 1s O(g;) and f; is O(g»), then f; + f> 1s O(max {g;, £>})
(Additivity) | Ex.If f; € O(n?) and f> € O(n?). Then, f; + f> € O(n?)

Transitivity If fis O(g) and g is O(h), then f1s O(h)

* So, we can ignore the lower terms and constants:

 Ex. f=2n°+4n’>-5n+ 1€ O(n’)
 Ex. f=4n> € O(n’)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

46

Exam 1: Time Complexity

* Asymptotic Bounds for Some Common Functions

Polynomials

f(n)y=ay+an+ ...+ amn?is O(n?) and thus, O(n?) if a,>0.

Logarithms

log, n is ©(log, n) for every a>1 and b>1.
Note: O(log, n) = O(log, n) (Recall log, n = log, a x log, n)

Logarithms vs polynomials

log, n is O(n?) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials

n¢ is O(r") for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 47

Asymptotic Order of Growth Hierarchy

nn

n!

3n

Zn

n3,2n3, (n — 1000)3,n3 — n?

n?,2n%,—1000n* + n,100n* + logn
nlogn

n,2n,1000n,101%7 + 1000

logn,log, n,logsn,10815000 M
loglogn
1,10,1000,C

f €06(g9) gn)

@ CS-3510: Design and Ana

48

Exam 1: Divide-and-Conquer (D&C)

* Main steps
* Divide up problems into several subproblems (of the same type).
* Solve (conquer) each subproblem (usually recursively).

e Combine the solutions.

* Most common framework
 Divide the problem of size n into two subproblems of size n/2 in linear time

* Solve (conquer) the two subproblems recursively.

T (n)

 Combine two solutions into overall solution in linear time.

lo

T(n/2) T(n/2)

PARRN ZITN

T(n/4) T(n/4) T(n/4) T(n/4)

/\ /\ /\ /\

T(/8) T(/8) T(/8) T(/8) T(/8) T(/8) T(/8) T(/8)

e
4

Exam 1: Divide-and-Conquer (D&C)

* Discussed examples:
* Binary-search
—> Variant/applications of binary search
* Merge-sort
-> Variant/applications of merge-sort
* Quick-sort
-> Variant/applications of quick-sort
* Matrix multiplication

* Closest pair of points

Search Algorithm

Sorting Algorithm

Sorting Algorithm

Type of questions:

- Variant (Design) /applications /parts of
binary search, merge-sort, or quick-sort

- True/False questions

- Worst case/best case

- Time and space complexity

- Complete the given incomplete solution

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

50

Exam 1: Master Theorem

* Goal. Recipe for solving common divide-and-conquer recurrences, Application of Master Theorem

n

T(n)=aT(b)+f(n) 1

r@(nlogb a), ifa > b? (case 1)
T(n) =< 0(n%logn),ifa = b? (case 2)| -
0(n?), if a < b? (case 3)
\

e [imitation. Master theorem cannot be used if

* T(n) is not monotone, e.g., T(n) = sin(n)
* f(n) is not polynomial,e.g., T(n) = 2T (g) 4 on

The recurrence relation is
given = direct

Dominated by
root/leaves/evenly
distributed

An algorithm (D&C) is
given, you need to find the
recurrence first. Then, apply
the Master Theorem =
indirect

* b cannot be expressed as a constant, e.g.,T(n) = aT(G/n) + f(n)

e
4

Exam 1: Dynamic Programming (DP)

* Dynamic Programming vs. Divide-and-Conquer

Divide-and-Conquer:
* Divide problem into subproblems

* Recursively solve the subproblems and aggregate solutions

Dynamic Programming

* Divide problem into subproblems, recursively solve them
* Subproblems overlap

* When a subproblem has been solved, remember its solution and reuse that
solution rather than resolving it later (memoization)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

52

Dynamic Programming

* Top-down vs. Bottom-up Approach

* “Top-down” dynamic programming
* Begin with problem description
* 1.€., begin at root of tree and work downwards
* Recursively subdivide problem into subproblems

* “Bottom-up”’ dynamic programming
 Start at the leaf nodes of tree, 1.e., the base case(s).

* Build up solution to larger problem from solutions of the simpler
subproblems

e
4

DP Examples

* One-dimensional

1. Fibonacci sequence
2. Staircase climbing
3. Rod-cutting

4. Red-black game

* Two-dimensional
5. Longest common subsequence (LCS) - Discuss the optimal substructure

6. Coin-changing
7. Knapsack

Type of questions:

- Design a DP algorithm

- Discuss the optimal substructure

- Write the recurrence relation/base case
- Top-down / bottom-up

- Time and space complexity

Type of questions:

- Recurrence given
- Solving part of the problem
- Time and space complexity

e
4

Exam 1: Practice Problems

CS-3510 | Algorithms

L MM teA T ouiuuun |

Course website 3 b

[pdf | tex | solution]

4 hwa:
[pdf | tex | solution]

5 hw5:
[pdf | tex | solution]

6 hwé:
[pdf | tex | solution]

home policies

06/03

06/10

06/17

07/08

lectures assignments resources

06/10

06/17

07/08

07/15

You can use this LaTeX template file to prepare your solutions on the cloud-based LaTeX editor OverLeaf.

Exam

1 Exam1:
Complexity, Devide-and-Conquer, Dynamic
Programming
[practice | pdf | solution]

2 Exam 2:
Graph Algorithms
[pdf | solution]

3 Final Exam:
Inclusive (including all discussed topics)
[practice | solution]

Date
(mm/dd)

06/09
Thursday

07/07
Thursday

07/28
Thursday

Time (EST)

03:30 pm

03:30 pm

03:00 pm

Location

Klaus 2443

Klaus 2443

Klaus 2443

CS-3510: Design and Analysis of Algorithms | Summer 2022

55

