
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Dynamic Programming II

Announcements (1/2)
• HW2 is released; due this Friday June 3, 2022.

• Exam 1 next week, Thursday June 9, 2022.

• Exam 1:
• Asymptotic notations and complexity
• Divide-and-Conquer
• Dynamic Programming

• Practice problems
• Will be published on Thursday

• Review for Exam 1 on Thursday

CS-3510: Design and Analysis of Algorithms | Summer 2022 2

Announcements (2/2)
• Lecture feedback
• https://forms.gle/hAJVaM44Ch2uPqBPA

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

https://forms.gle/hAJVaM44Ch2uPqBPA

Roadmap

4CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο 𝑎! , where
𝑎 is the number of possible options to choose at each step which is equal to the number
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The
subproblems do
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

Subproblems overlap Subproblems do not overlap

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

Time complexity? Exponential!

DP Example: (1) Fibonacci

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)Each
 will b

e ca
lculate

d only once

Retrun
dp[1]

Retrun
dp[2]

Retrun
dp[3]

Retrun
dp[4]

Time complexity? O(n)

Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler

subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Recursive
with
memoization

Iterative

DP Example: (1) Fibonacci
• So, which one is better?

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Top-down (recursive with memoization) Bottom-up (iterative) (a.k.a tabulation)

- Starts with the root of the recursion tree
- Implemented as recursive function
- [Memoization:] The result (returned values)

of each recursive call will be stored in a data
structure, such as array or hashmap
(dictionary in Python)

- Main advantage:
- Easier (more “intuitive”) to write, as we

don’t need to know the ordering of the
recursion calls and sub-problems

- Starts with base cases
- Implemented with iteration (loop)

- Main advantage:
- Avoiding the recursion overhead

(recursive calls). So, in practice, to
program may run slightly faster.

- “Sometimes” it allows to use less
memory.

DP Example: (1) Fibonacci
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Do we need to store all values?

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (1) Fibonacci
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Each computation needs only the last
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (2) Climbing Stairs
• Problem:
- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either

1 or 2 steps.
- In how many distinct ways we

can reach to the top?

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

DP Solution:
- Let dp[i] = number of distinct ways to reach ith step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s):

- dp[0] = 0, (when we are on the ground, no stairs)
- dp[1] = 1, (only one way to reach step 1)
- dp[2] = 2 (we have two ways to reach step 2)

i = 1

i = 2

DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

dp[2] = 2

for i=3,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Similar to Fibonacci we can re-write the
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

if n < 3: return n

f1 = 1

f2 = 2

for i=3,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Similar to Fibonacci we can re-write the
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and
a table of prices pi for i=1, …, n,
determine the maximum revenue
rn obtainable by cutting up the rod
and selling the pieces.
Note that if the price pn for a rod
of length n is large enough, an
optimal solution may require no
cutting at all.

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine the maximum
revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution may require no
cutting at all.

• Example:
Consider n=4
How many ways to cut up a rod of length n?

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

- At each integer distance i inches from the left
end, we have an independent option of “cutting”
or “not cutting”, for i =1,…, n-1: 2n-1

- Find an optimal decomposition 𝑛 = 𝑖" + 𝑖# +⋯+ 𝑖$, for some 1 ≤ 𝑘 ≤ 𝑛 such that
the revenue 𝑟! = 𝑝%! + 𝑝%" +⋯+ 𝑝%# is maximized.

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

𝑛 = 0 ⟹ 𝑟& = 0

𝑛 = 1 ⟹ 𝑟! = ⏞𝑝!
'()*+

𝑛 = 2 ⟹ 𝑟" = max ⏞𝑝"
'()*+

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟!
/01 2343'*3 52(/ '6!

𝑛 = 3 ⟹ 𝑟7 = max ⏞𝑝7
'()*+

, ⏞𝑝"
)*+ @ -."

+ ⏞𝑟!
/01 2343'*3 52(/ '6"

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟"
/01 2343'*3 52(/ '6!

𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max 𝑝$ + 𝑟& , 𝑝$6! + 𝑟! , 𝑝$6" + 𝑟" , … , 𝑝! + 𝑟$6! = max

!9%9$
𝑝% + 𝑟$6%

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max

!9%9$
𝑝% + 𝑟$6% Recurrence relation ⟹ Recursive algorithm

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6%

• Base case: 𝑟& = 0
• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
Running time?

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the subtree of 𝑟$ in the recursion tree

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1 = # of leaves
• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#, for

some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! + 𝑝%" +⋯+
𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the recursion tree
• 𝑇 𝑛 = 1 + 1 + 2 + 4 + 8 + …
𝑇 𝑛 =1 + ∑%.&$6!𝑇 𝑖 =1 + 𝟐

𝒏6𝟏
𝟐6𝟏

= 𝟐𝒏

• 𝑇 𝑛 ∈ Θ 2$ Exponential (the same subproblems solved repeatedly)

DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down
(recursive with
memoization)

Bottom-up
(iterative)

DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down
(recursive with
memoization)

Bottom-up
(iterative)

Time complexity: O(n2)
Space complexity: O(n)

Dynamic Programming (DP)
• Dynamic Programming Elements

• DP often (not always!) applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• “Optimal substructure”
• Finding the optimal solution involves finding the optimal solution to

subproblems
• The subproblems are the same as the original problem, but are “smaller”

(e.g., involve smaller-sized input data) Similar to D&C
• “Overlapping subproblems” Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

Dynamic Programming (DP)
• Dynamic Programming Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be
constructed from optimal solutions to subproblems (This step is concluded by
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many
times but note the total number of distinct subproblems is polynomial (Recall the
recursion tree for Fibonacci and Rod-cutting problems, where the total number of
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only
once and reuses the stored result all other times (This can be done by using either
top-down (recursive+memoization) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

DP Example: (4) Red-Black Game
• You are given a sequence of n positive numbers (a1, a2, ..., an).

Initially, they are all colored black. At each move, you choose a black
number ak and color it and its immediate neighbors (if any) red (the
immediate neighbors are the elements ak−1, ak+1). You get ak points for
this move. The game ends when all numbers are colored red. The goal
is to get as many points as possible.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7 a8

DP Example: (4) Red-Black Game
• Going for the most valuable remaining black number?

• Counter example: A =[7, 3, 90, 100, 80, 5] à A =[7, 3, 90, 100, 80, 5]

• DP Solution:
• Original problem is to select from n numbers s.t. maximizing the total value.
• The optimal solution to the original problem as OPT(n)
• Subproblem: find OPT(i), where we select from the first i numbers a1, a2, ..., ai
• The solution OPT(i) either incudes ai or not includes ai:

• OPT(i) includes ai. Then OPT(i) can not include ai−1 as ai−1 will be colored red.
So, OPT(i) would include an optimal solution for numbers a1, ..., ai−2, that is, OP T (i − 2).

• OPT(i) does NOT includes ai. Then OPT(i) is an optimal solution for numbers a1, ..., ai−1.

• Recurrence relation:
• OPT(i) = max{OPT(i-2) + ai, OPT(i-1)}
• OPT(0) = 0, OPT(1) = a1

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Multidimensional DP
• “State” variables = variables needed for defining the recurrence

relation
• Dimension of a DP algorithm = number of state variables
• So far, only one state variable à one-dimensional DP
• Fibonacci: Fib 𝑛 = Fib 𝑛 − 1 + Fib 𝑛 − 2
• Rod-cutting: revenue[𝑛] = max

>?@?A
prices[𝑖] + revenue[𝑛 − 𝑖]

• Sometimes, we need multiple state variables (dimensions) to describe
and solve the problem.
• Two dimensional (more common).

• Longest common subsequence (LCS), knapsack, coin-changing, etc.
• Three dimensional:

• All-pairs shortest path (Floyd-Warshall)

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

DP Example: (5) Longest Common Subsequence
Motivation
• In biology, DNA strands represented as strings of bases: adenine (A),

guanine (G), cytosine (C), thymine (T)
• For example: ACCGGTCGAGTGC…
• One operation of interest is to determine the “similarity” of two

different strings

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Longest Common Subsequence (LCS)
• Sequence is an ordered list of elements

X = <x1, x2, … xm>
• Z is a subsequence of X if there is a strictly increasing sequence of indices

i1, i2, … ik such that z1=xi1, z2=xi2, …, zk=xik

Example: X = <A, B, C, B, D, A, B>
Z = <B, C, D, B> is a subsequence of X
Z = <A, C, A, D> is not a subsequence of X

• In other words, Z can be constructed by starting with X, and deleting zero or
more elements

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

LCS
• Given two sequences:

X = <x1, x2, … xm>
Y = <y1, y2, … yn>

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:
X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A>

<B, C, A> is a common subsequence of X and Y
<B, C, A, B> is an LCS of X and Y
<B, C, B, A> and <B, D, A, B> are also LCS’s of X and Y
(LCS may not be unique!)

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

LCS
• Brute-force solution:

• Enumerate all subsequences of X
• For each such subsequence, is it also a subsequence of Y?
• Pick the longest one that is a subsequence of both X and Y

• What is the runtime of the brute-force solution?
• m elements in X
• n elements in Y

• Hint:
• How many subsequences in X?
• How many comparisons needed?

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

LCS
• Brute-force solution:

• Enumerate all subsequences of X
• For each such subsequence, is it also a subsequence of Y?
• Pick the longest one that is a subsequence of both X and Y

• What is the runtime of the brute-force solution?
• m elements in X
• n elements in Y

• Hint:
• How many subsequences in X?
• How many comparisons needed?

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

• There are 2m subsequences in X (each element
of X is either in the subsequence or not)

• There are n comparisons needed for each
subsequence

• n * 2m comparisons
• Exponential runtime!

LCS
• Given a sequence: X = <x1, x2, … xm>

Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

LCS
• Given a sequence: X = <x1, x2, … xm>

Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

• Key Observation:
• The LCS of sequences X and Y can be found by

finding the LCS of prefixes of X and Y

• This leads to development of a recursive
solution to computing LCS

LCS: Optimal Substructure
• Let

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

LCS: Optimal Substructure
• Let

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

The last element of X
and Y is the last element
of the solution

LCS: Optimal Substructure
• Let

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

Continue search using prefix of X

LCS: Optimal Substructure
• Let

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

Continue search using prefix of Y

LCS: Recurrence
• Let

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• The above subproblems share many computations.
• For example, computing LCS (Xm-1, Y) and LCS (X, Yn-1) both involve computing LCS (Xm-1, Yn-1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

Overlapping
subproblems

If (xm == yn):
§zk = xm;
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

LCS: Recurrence
• Compute the length of the LCS
• Involves computing LCS

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

If (xm == yn):
§zk = xm;
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

LCS: Recurrence
• Compute the length of the LCS
• Involves computing LCS

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

If (xm == yn):
§zk = xm;
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

LCS: Computation

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

• c[i,j] = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)

for (j=1; j<=n; j++)
if (xi==yj) c[i][j]=c[i-1][j-1]+1;
// c[i][j]=max(c[i-1][j],c[i][j-1])
else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
else: c[i][j] = c[i][j-1];

LCS: Example
Determine longest common subsequence of X and Y
• X = ABCB
• Y = BDCAB

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

LCS(X, Y) = BCB
X = A B C B
Y = B D C A B

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

X = ABCB; m = 4
Y = BDCAB; n = 5

m+1 rows

n+1 columnsABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 61

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 62

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

0

ABCB
BDCAB

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 63

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 0

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 64

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

0

1

2

3

4

i
j 0 1 2 3 4 5

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 0 1

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 65

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

000 1 1

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 66

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 10 1

1

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 67

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 1 11

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 68

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 1 1 1 2

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 69

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

21 1 11

1 1

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 70

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 11

1 1 2

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 71

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 72

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 73

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms | Summer 2022 74

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3
Length of LCS!

• The previous step determined the length of LCS, but not the LCS itself.
• Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
• For each c[i,j] we can record how it was acquired:

LCS: Computing the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 75

2

2 3

2

if (xi==yj)
c[i][j]=
c[i-1][j-1]+1;

1

1 2

2 0

1 1

0

else if (c[i-1][j]
>= c[i][j-1])

c[i][j] = c[i-1][j];

else c[i][j] =
c[i][j-1];

B

B

C

B

B

D244

“F”=found “X”=advance X “Y”=advance Y

LCS: Computing the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 76

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1,F

1,F

2,F

3,F

2,F

1,F 1,Y

2,Y

1,Y

0,X 0,X 0,X

1,X

1,X 1,X 2,X

1,X 2,X 2,X

1,Y

LCS: Computing the LCS
• Remember that

• So, we can start from c[m,n] and go backwards
• Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part

of the LCS computed)
• When i=0 or j=0 (i.e., we reached the beginning), output the

remembered letters in reverse order

CS-3510: Design and Analysis of Algorithms | Summer 2022 77

î
í
ì

--
=+--

=
otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic
jyixjic

jic

LCS: Computing the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 78

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1,F

1,F

2,F

3,F

2,F

1,F 1,Y

2,Y

1,Y

0,X 0,X 0,X

1,X

1,X 1,X 2,X

1,X 2,X 2,X

1,Y

LCS: Computing the LCS

LCS (reversed order): B C B à B C B (forward)

CS-3510: Design and Analysis of Algorithms | Summer 2022 79

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

i
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1,F0,X0,X0,X 1,Y

1,F 2,F1,Y 1,X

1,X 1,X 2,F

1,Y

2,X2,Y

1,F 1,X 2,X 2,XB 3,F

LCS: Output (Printing) the LCS

CS-3510: Design and Analysis of Algorithms | Summer 2022 80

// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1;

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j];

b[i][j]=“X”;

else

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

// to print LCS, call Print_LCS:

Print_LCS(b, X, m, n);

// follow annotations to print out

Print_LCS(b, X, i, j):

if ((i==0) || (j==0)) return;

if (b[i][j] == “F”)

Print_LCS(b, X, i-1, j-1);

print (x);

else if (b[i][j] == “X”)

Print_LCS(b, X, i-1, j);

else

Print_LCS(b, X, i, j-1);

LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS

• Step 2: Printing

CS-3510: Design and Analysis of Algorithms | Summer 2022 81

LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS
• O(m×n) to fill in matrix

• Step 2: Printing
• O(m+n)

CS-3510: Design and Analysis of Algorithms | Summer 2022 82

DP: Summary
• Dynamic programming is a general algorithm approach similar to

divide and conquer, but with shared/overlapped subproblems rather
than disjoint ones.

• Efficiency is obtained by recording (memoization) the solution of
subproblems rather than recomputing them.

• Dynamic programming applicable to many optimization problems
• Two main elements:
• Optimal substructure
• Overlapping subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 83

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
• Slides by Elizabeth Cherry, Georgia Institute of Technology.

84CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

