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Announcements (1/2)
• HW2 is released; due this Friday June 3, 2022.

• Exam 1 next week, Thursday June 9, 2022.

• Exam 1:
• Asymptotic notations and complexity
• Divide-and-Conquer
• Dynamic Programming

• Practice problems
• Will be published on Thursday

• Review for Exam 1 on Thursday
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Announcements (2/2)
• Lecture feedback  
• https://forms.gle/hAJVaM44Ch2uPqBPA
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https://forms.gle/hAJVaM44Ch2uPqBPA


Roadmap
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We are here!



A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο 𝑎! , where 
𝑎 is the number of possible options to choose at each step which is equal to the number 
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach
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Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer
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Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The 
subproblems do 
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)



Dynamic Programming (DP)
• Dynamic Programming               vs.               Divide-and-Conquer
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DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2
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Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X   5

Fib (3) X   3

Fib (4) X   2

Time complexity? Exponential!



DP Example: (1) Fibonacci
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Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)Each
 will b

e ca
lculate

d only once

Retrun
dp[1]

Retrun
dp[2]

Retrun
dp[3]

Retrun
dp[4]

Time complexity?  O(n) 



Dynamic Programming
• Top-down vs. Bottom-up Approach

• “Top-down” dynamic programming
• Begin with problem description
• i.e., begin at root of tree and work downwards
• Recursively subdivide problem into subproblems

• “Bottom-up” dynamic programming
• Start at the leaf nodes of tree, i.e., the base case(s).
• Build up solution to larger problem from solutions of the simpler 

subproblems
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Recursive
with 
memoization

Iterative



DP Example: (1) Fibonacci
• So, which one is better?
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Top-down (recursive with memoization) Bottom-up (iterative) (a.k.a tabulation)

- Starts with the root of the recursion tree
- Implemented as recursive function
- [Memoization:] The result (returned values) 

of each recursive call will be stored in a data 
structure, such as array or hashmap
(dictionary in Python)

- Main advantage:
- Easier (more “intuitive”) to write, as we 

don’t need to know the ordering of the 
recursion calls and sub-problems

- Starts with base cases
- Implemented with iteration (loop)

- Main advantage:
- Avoiding the recursion overhead 

(recursive calls). So, in practice, to 
program may run slightly faster.

- “Sometimes” it allows to use less 
memory.



DP Example: (1) Fibonacci
• Top-down (recursive with memoization)         Bottom-up (iterative)
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n    # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Do we need to store all values?

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (1) Fibonacci
• Top-down (recursive with memoization)         Bottom-up (iterative)
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n    # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Each computation needs only the last 
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (2) Climbing Stairs
• Problem: 
- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either

1 or 2 steps.
- In how many distinct ways we 

can reach to the top? 
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DP Solution:
- Let dp[i] = number of distinct ways to reach ith step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s): 

- dp[0] = 0,   (when we are on the ground, no stairs)
- dp[1] = 1,   (only one way to reach step 1)
- dp[2] = 2   (we have two ways to reach step 2)

i = 1

i = 2



DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization)         Bottom-up (iterative)
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StairClimbing(n):

dp = [0]*(n+1)   # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

dp = [0]*(n+1)  # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

dp[2] = 2

for i=3,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Similar to Fibonacci we can re-write the 
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization)         Bottom-up (iterative)
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StairClimbing(n):

dp = [0]*(n+1)   # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

if n < 3: return n

f1 = 1

f2 = 2

for i=3,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Similar to Fibonacci we can re-write the 
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)



DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and
a table of prices pi for i=1, …, n,
determine the maximum revenue
rn obtainable by cutting up the rod
and selling the pieces.
Note that if the price pn for a rod
of length n is large enough, an
optimal solution may require no
cutting at all.
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DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example: 
Consider n=4
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DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine the maximum
revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution may require no
cutting at all.

• Example: 
Consider n=4
How many ways to cut up a rod of length n?
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- At each integer distance i inches from the left 
end, we have an independent option of “cutting” 
or “not cutting”, for i =1,…, n-1: 2n-1

- Find an optimal decomposition  𝑛 = 𝑖" + 𝑖# +⋯+ 𝑖$, for some 1 ≤ 𝑘 ≤ 𝑛 such that 
the revenue 𝑟! = 𝑝%! + 𝑝%" +⋯+ 𝑝%# is maximized.



DP Example: (3) Rod-cutting
• Example: 
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0

𝑛 = 1 ⟹ 𝑟! = ⏞𝑝!
'( )*+

𝑛 = 2 ⟹ 𝑟" = max ⏞𝑝"
'( )*+

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟!
/01 2343'*3 52(/ '6!

𝑛 = 3 ⟹ 𝑟7 = max ⏞𝑝7
'( )*+

, ⏞𝑝"
)*+ @ -."

+ ⏞𝑟!
/01 2343'*3 52(/ '6"

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟"
/01 2343'*3 52(/ '6!

𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…



DP Example: (3) Rod-cutting
• Example: 
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max 𝑝$ + 𝑟& , 𝑝$6! + 𝑟! , 𝑝$6" + 𝑟" , … , 𝑝! + 𝑟$6! = max

!9%9$
𝑝% + 𝑟$6%

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max

!9%9$
𝑝% + 𝑟$6% Recurrence relation ⟹ Recursive algorithm

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6%

• Base case: 𝑟& = 0
• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
Running time?



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the subtree of 𝑟$ in the recursion tree 



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1 = # of leaves
• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#, for

some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! + 𝑝%" +⋯+
𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the recursion tree
• 𝑇 𝑛 = 1 + 1 + 2 + 4 + 8 + … 
𝑇 𝑛 =1 + ∑%.&$6!𝑇 𝑖 =1 + 𝟐

𝒏6𝟏
𝟐6𝟏

= 𝟐𝒏

• 𝑇 𝑛 ∈ Θ 2$ Exponential (the same subproblems solved repeatedly) 



DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down 
(recursive with 
memoization)

Bottom-up 
(iterative)



DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down 
(recursive with 
memoization)

Bottom-up 
(iterative)

Time complexity: O(n2)
Space complexity: O(n)



Dynamic Programming (DP)
• Dynamic Programming Elements

• DP often (not always!) applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• “Optimal substructure”
• Finding the optimal solution involves finding the optimal solution to 

subproblems
• The subproblems are the same as the original problem, but are “smaller” 

(e.g., involve smaller-sized input data) Similar to D&C
• “Overlapping subproblems”  Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization
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Dynamic Programming (DP)
• Dynamic Programming  Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be 
constructed from optimal solutions to subproblems (This step is concluded by 
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many 
times but note the total number of distinct subproblems is polynomial (Recall the 
recursion tree for Fibonacci and Rod-cutting problems, where the total number of 
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only 
once and reuses the stored result all other times (This can be done by using either 
top-down (recursive+memoization) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.
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DP Example: (4) Red-Black Game
• You are given a sequence of n positive numbers (a1, a2, ..., an). 

Initially, they are all colored black. At each move, you choose a black 
number ak and color it and its immediate neighbors (if any) red (the 
immediate neighbors are the elements ak−1, ak+1). You get ak points for 
this move. The game ends when all numbers are colored red. The goal 
is to get as many points as possible. 
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a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7 a8



DP Example: (4) Red-Black Game
• Going for the most valuable remaining black number? 

• Counter example: A =[7, 3, 90, 100, 80, 5] à A =[7, 3, 90, 100, 80, 5] 

• DP Solution:
• Original problem is to select from n numbers s.t. maximizing the total value.
• The optimal solution to the original problem as OPT(n) 
• Subproblem: find OPT(i), where we select from the first i numbers a1, a2, ..., ai
• The solution OPT(i) either incudes ai or not includes ai:

• OPT(i) includes ai. Then OPT(i) can not include ai−1 as ai−1 will be colored red. 
So, OPT(i) would include an optimal solution for numbers a1, ..., ai−2, that is, OP T (i − 2). 

• OPT(i) does NOT includes ai. Then OPT(i) is an optimal solution for numbers a1, ..., ai−1. 

• Recurrence relation: 
• OPT(i) = max{OPT(i-2) + ai, OPT(i-1)}
• OPT(0) = 0, OPT(1) = a1
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Multidimensional DP
• “State” variables = variables needed for defining the recurrence 

relation 
• Dimension of a DP algorithm = number of state variables
• So far, only one state variable à one-dimensional DP
• Fibonacci: Fib 𝑛 = Fib 𝑛 − 1 + Fib 𝑛 − 2
• Rod-cutting: revenue[𝑛] = max

>?@?A
prices[𝑖] + revenue[𝑛 − 𝑖]

• Sometimes, we need multiple state variables (dimensions) to describe 
and solve the problem.
• Two dimensional (more common). 

• Longest common subsequence (LCS), knapsack, coin-changing, etc.
• Three dimensional: 

• All-pairs shortest path (Floyd-Warshall)
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DP Example: (5) Longest Common Subsequence
Motivation
• In biology, DNA strands represented as strings of bases: adenine (A), 

guanine (G), cytosine (C), thymine (T)
• For example: ACCGGTCGAGTGC…
• One operation of interest is to determine the “similarity” of two 

different strings
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Longest Common Subsequence (LCS)
• Sequence is an ordered list of elements

X = <x1, x2, … xm>
• Z is a subsequence of X if there is a strictly increasing sequence of indices 

i1, i2, … ik such that z1=xi1, z2=xi2, …, zk=xik

Example: X = <A, B, C, B, D, A, B>
Z = <B, C, D, B> is a subsequence of X
Z = <A, C, A, D> is not a subsequence of X

• In other words, Z can be constructed by starting with X, and deleting zero or 
more elements
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LCS
• Given two sequences:

X = <x1, x2, … xm>
Y = <y1, y2, … yn>

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:
X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A>

<B, C, A> is a common subsequence of X and Y
<B, C, A, B> is an LCS of X and Y
<B, C, B, A> and <B, D, A, B> are also LCS’s of X and Y 
(LCS may not be unique!)
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LCS
• Brute-force solution:

• Enumerate all subsequences of X
• For each such subsequence, is it also a subsequence of Y?
• Pick the longest one that is a subsequence of both X and Y

• What is the runtime of the brute-force solution?
• m elements in X
• n elements in Y

• Hint:
• How many subsequences in X?
• How many comparisons needed?
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LCS
• Brute-force solution:

• Enumerate all subsequences of X
• For each such subsequence, is it also a subsequence of Y?
• Pick the longest one that is a subsequence of both X and Y

• What is the runtime of the brute-force solution?
• m elements in X
• n elements in Y

• Hint:
• How many subsequences in X?
• How many comparisons needed?
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• There are 2m subsequences in X (each element 
of X is either in the subsequence or not)

• There are n comparisons needed for each 
subsequence

• n * 2m comparisons
• Exponential runtime! 



LCS
• Given a sequence: X = <x1, x2, … xm>

Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m 
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>
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LCS
• Given a sequence: X = <x1, x2, … xm>

Xi = <x1, x2, … xi> is defined as the ith prefix of X, i=0, 1, …m 
(Xi is the first i elements of X)

• Example: X = <A, B, C, B>
• X0 = <>
• X1 = <A>
• X2 = <A, B>
• X3 = <A, B, C>
• X4 = <A, B, C, B>
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• Key Observation:
• The LCS of sequences X and Y can be found by 

finding the LCS of prefixes of X and Y

• This leads to development of a recursive 
solution to computing LCS



LCS: Optimal Substructure
• Let 

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data
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LCS: Optimal Substructure
• Let 

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data
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The last element of X 
and Y is the last element 
of the solution



LCS: Optimal Substructure
• Let 

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data
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Continue search using prefix of X



LCS: Optimal Substructure
• Let 

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• Suppose x8 = y6 :
Then Z = LCS (X, Y) = LCS (X7, Y5) + zk, where zk = x8 (= y6)

• Suppose x8 ≠ y6:
if zk ≠ x8 then Z = LCS (X7, Y)
if zk ≠ y6 then Z = LCS (X, Y5)

• In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
• Subproblems same as original, but with smaller input data
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Continue search using prefix of Y



LCS: Recurrence
• Let 

X = <A, B, C, B, D, A, B, x8> (m=8)
Y = <B, D, C, A, B, y6> (n=6)
LCS(X,Y) = Z = <z1, z2, … zk>

• The above subproblems share many computations.
• For example, computing LCS (Xm-1, Y) and LCS (X, Yn-1) both involve computing LCS (Xm-1, Yn-1) 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 55

Overlapping 
subproblems

If (xm == yn): 
§zk = xm; 
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two



LCS: Recurrence
• Compute the length of the LCS
• Involves computing LCS 

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)
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If (xm == yn): 
§zk = xm; 
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j]  = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj



LCS: Recurrence
• Compute the length of the LCS
• Involves computing LCS 

of prefixes to X and Y

• Let c[i,j] = LCS(Xi, Yj)
• Data structure used for memoization

• c[m,n] is the length of LCS(X, Y)
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If (xm == yn): 
§zk = xm; 
§compute LCS (Xm-1, Yn-1)

Else:
§compute LCS (Xm-1, Y) and LCS (X, Yn-1)
§pick the longer subsequence of the two

• c[i,j]  = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj



LCS: Computation
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• c[i,j]  = 0, if (i=0 or j=0)
= c[i-1,j-1] + 1, if i>0, j>0, and xi = yj
= max (c[i, j-1], c[i-1, j]) if i>0, j>0, and xi ≠ yj

// compute LCS for 0 length cases
for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;
// compute in row-major order
for (i=1; i<=m; i++)

for (j=1; j<=n; j++)
if (xi==yj) c[i][j]=c[i-1][j-1]+1;
// c[i][j]=max(c[i-1][j],c[i][j-1])
else if (c[i-1][j]>=c[i][j-1]): c[i][j] = c[i-1][j];
else: c[i][j] = c[i][j-1];



LCS: Example
Determine longest common subsequence of X and Y
• X = ABCB
• Y = BDCAB
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LCS(X, Y) = BCB
X = A B C B
Y =     B D C A B



LCS: Example
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j       0        1          2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

X = ABCB;   m = 4
Y = BDCAB; n = 5

m+1 rows

n+1 columnsABCB
BDCAB



LCS: Example
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j       0        1          2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for (i=0; i<=m; i++) c[i,0]=0;
for (j=0; j<=n; j++) c[0,j]=0;

ABCB
BDCAB



LCS: Example
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j       0        1 2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

0

ABCB
BDCAB



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j       0        1          2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 0



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

0

1

2

3

4

i
j       0        1          2         3        4 5 

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 0 1



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j       0        1          2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

000 1 1



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

j       0        1 2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

0 0 10 1

1



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3        4 5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 1 11



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3        4         5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 1 1 1 2



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2 3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

21 1 11

1 1



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3 4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 11

1 1 2



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1 2         3        4         5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1



ABCB
BDCAB

LCS: Example

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 73

if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3 4 5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0
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00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2



ABCB
BDCAB

LCS: Example
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if (xi==yj) c[i][j]=c[i-1][j-1]+1;
else: c[i][j] = max(c[i-1][j],c[i][j-1])

i
j       0        1          2         3        4         5

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3
Length of LCS!



• The previous step determined the length of LCS, but not the LCS itself.
• Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
• For each c[i,j] we can record how it was acquired:

LCS: Computing the LCS
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2

2 3

2

if (xi==yj)
c[i][j]=
c[i-1][j-1]+1;

1

1 2

2 0

1 1

0

else if (c[i-1][j] 
>= c[i][j-1])

c[i][j] = c[i-1][j];

else c[i][j] = 
c[i][j-1];

B

B

C

B

B

D244

“F”=found “X”=advance X “Y”=advance Y



LCS: Computing the LCS
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

j         0         1         2          3          4          5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1,F

1,F

2,F

3,F

2,F

1,F 1,Y

2,Y

1,Y

0,X 0,X 0,X

1,X

1,X 1,X 2,X

1,X 2,X 2,X

1,Y



LCS: Computing the LCS
• Remember that

• So, we can start from c[m,n] and go backwards
• Whenever c[i,j] = c[i-1, j-1]+1, remember x[i]   (because x[i] is a part 

of the LCS computed)
• When i=0 or j=0 (i.e., we reached the beginning), output the 

remembered letters in reverse order
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î
í
ì

--
=+--

=
otherwise]),1[],1,[max(

],[][ if1]1,1[
],[
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jic



LCS: Computing the LCS
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

j         0         1         2          3          4          5 

0

1

2

3

4

i
Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1,F

1,F

2,F

3,F

2,F

1,F 1,Y

2,Y

1,Y

0,X 0,X 0,X

1,X

1,X 1,X 2,X

1,X 2,X 2,X

1,Y



LCS: Computing the LCS

LCS (reversed order): B C B  à B C B (forward)
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

i
j       0        1          2         3        4         5 

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1,F0,X0,X0,X 1,Y

1,F 2,F1,Y 1,X

1,X 1,X 2,F

1,Y

2,X2,Y

1,F 1,X 2,X 2,XB 3,F



LCS: Output (Printing) the LCS
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// annotate: found(“F”),

// advance X(“X”),advance Y(“Y”)

for (i=1; i<=m; i++)

for (j=1; j<=n; j++)

if (xi==yj):

c[i][j]=c[i-1][j-1]+1; 

b[i][j]=“F”;

else if (c[i-1][j]>=c[i][j-1])

c[i][j] = c[i-1][j]; 

b[i][j]=“X”;

else 

c[i][j] = c[i][j-1];

b[i][j]=“Y”;

// to print LCS, call Print_LCS:

Print_LCS(b, X, m, n);

// follow annotations to print out

Print_LCS(b, X, i, j):

if ((i==0) || (j==0)) return;

if (b[i][j] == “F”)

Print_LCS(b, X, i-1, j-1); 

print (x);

else if (b[i][j] == “X”)

Print_LCS(b, X, i-1, j);

else 

Print_LCS(b, X, i, j-1);



LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS

• Step 2: Printing
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LCS: Running Time
•What is the execution time for each step of this algorithm?

• Step 1: Computing LCS
• O(m×n) to fill in matrix

• Step 2: Printing
• O(m+n)
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DP: Summary
• Dynamic programming is a general algorithm approach similar to

divide and conquer, but with shared/overlapped subproblems rather 
than disjoint ones.

• Efficiency is obtained by recording (memoization) the solution of 
subproblems rather than recomputing them. 

• Dynamic programming applicable to many optimization problems
• Two main elements:
• Optimal substructure
• Overlapping subproblems
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