CS-3510: Design and Analysis of Algorithms

Dynamic Programming II

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

Announcements (1/2)

- HW2 is released; due this Friday June 3, 2022.
- Exam 1 next week, Thursday June 9, 2022.

• Exam 1:

- Asymptotic notations and complexity
- Divide-and-Conquer
- Dynamic Programming
- Practice problems
 - Will be published on Thursday
 - Review for Exam 1 on Thursday

Announcements (2/2)

- Lecture feedback
 - <u>https://forms.gle/hAJVaM44Ch2uPqBPA</u>

CS 3510 | Class Feedback

(not shared) Switch account	Draft restored
* Required	
The class pace in the first two weeks was *	
O Slow	
O Slightly slow	
O Just right	
Slightly fast	
O Fast	
Additional Comments/Questions?	
Additional Commental additions.	
Your answer	
Submit	Clear fo

3

A Note about Recursive Algorithms

- In general, recursive algorithms can be used in various setups:
 - Backtracking
 - Ex. Enumerating all subsets of a given set or array
 - Usually (not always!), in these cases we can expect an exponential runtime $O(a^n)$, where a is the number of possible options to choose at each step which is equal to the number branches after each node in the recursion tree.
 - Divide-and-Conquer (D&C)
 - Dynamic programming (DP)
 - Traversing a graph or tree using the depth-first search (DFS) approach

Dynamic Programming (DP)

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
 - Divide problem into subproblems
 - Recursively solve the subproblems and aggregate solutions <u>not overlap</u>

Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)

Note: The

subproblems do

Dynamic Programming (DP)

• Dynamic Programming vs. Divide-and-Conquer

Subproblems overlap

Subproblems do not overlap

Dynamic Programming

- Top-down vs. Bottom-up Approach
 - "Top-down" dynamic programming
 - Begin with problem description
 - i.e., begin at root of tree and work downwards
 - Recursively subdivide problem into subproblems
 - "Bottom-up" dynamic programming
 - Start at the leaf nodes of tree, i.e., the base case(s).
 - Build up solution to larger problem from solutions of the simpler subproblems

Recursive with memoization

Iterative

• So, which one is better?

Top-down (recursive with memoization)	Bottom-up (iterative) (a.k.a tabulation)
 Starts with the root of the recursion tree Implemented as recursive function [Memoization:] The result (returned values) of each recursive call will be stored in a data structure, such as array or hashmap (dictionary in Python) <u>Main advantage:</u> Easier (more "intuitive") to write, as we 	 Starts with base cases Implemented with iteration (loop) <u>Main advantage:</u> Avoiding the recursion overhead (recursive calls). So, in practice, to program may run slightly faster. "Sometimes" it allows to use less
don't need to know the ordering of the recursion calls and sub-problems	memory.

• Top-down (recursive with memoization) Bottom-up (iterative)

Fib(n): Time: O(n), Space: O(n)	Fib(n): Time: O(n), Space: O(n)
<pre>dp = [0]*n # initialize dp[i]=0</pre>	<pre>dp = [0]*n # initialize dp[i]=0</pre>
recur(i):	dp[0] = 0
if n==0: return 0	dp[1] = 1
if n==1: return 1	for i=2,,n:
if dp[i]==0:	dp[i] = dp[i-1] + dp[i-2]
dp[i] = recur(i-1) + recur(i-2)	return dp[n]
return dp[i]	Do we need to store all values?

return recur(n)

• Top-down (recursive with memoization) Bottom-up (iterative)

Fib(n): Time: O(n), Space: O(n)	Fib(n): Time: O(n), Space: O(n)	
<pre>dp = [0]*n # initialize dp[i]=0</pre>	<pre>dp = [0]*n # initialize dp[i]=0</pre>	
recur(i):	dp[0] = 0	
if n==0: return 0	dp[1] = 1	
if n==1: return 1	for i=2,,n:	
if dp[i]==0:	dp[i] = dp[i-1] + dp[i-2]	
dp[i] = recur(i-1) + recur(i-2)	return dp[n]	
return dp[i]	Each computation needs only the last two Fibonacci numbers!	
return recur(n)	Re-write the code with two scalars.	

DP Example: (2) Climbing Stairs

• Problem:

- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either 1 or 2 steps.
- In how many distinct ways we can reach to the top?

DP Solution:

- Let dp[i] = number of distinct ways to reach i^{th} step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s):
 - dp[0] = 0, (when we are on the ground, no stairs)

14

- dp[1] = 1, (only one way to reach step 1)
- dp[2] = 2 (we have two ways to reach step 2)

DP Example: (2) Climbing Stairs

• Top-down (recursive with memoization)

Bottom-up (iterative)

StairClimbing(n):	Time: O(n), Space: O(n)	StairClimbing(n):	Time: O(n), Space: O(n)
dp = [0]*(n+1) #	initialize dp[i]=0	dp = [0]*(n+1)	<pre># initialize dp[i]=0</pre>
recur(i):		dp[0] = 0	
if n==0: return	0	dp[1] = 1	
if n==1: return	1	dp[2] = 2	
if n==2: return 2	2	for i=3,,n:	
if dp[i]==0:		dp[i] = dp[i	-1] + dp[i-2]
dp[i] = recur	(i-1) + recur(i-2)	return dp[n]	
return dp[i]			
return recur(n)		Similar to Fibonacci code with two scalar	

DP Example: (2) Climbing Stairs

• Top-down (recursive with memoization)

Bottom-up (iterative)

StairClimbing(n):	Time: O(n), Space: O(n)	StairClimbing(n):	Time: O(n), Space: O(1)
dp = [0]*(n+1) #	initialize dp[i]=0	if n < 3: return r	1
recur(i):		f1 = 1	
if n==0: return	0	f2 = 2	
if n==1: return	1	for i=3,,n:	
if n==2: return	2	f = f1 + f2	
if dp[i]==0:		f1 = f2; f2 =	f
dp[i] = recur	(i-1) + recur(i-2)	return f	
return dp[i]			
return recur(n)		Similar to Fibonacci v	we can re-write the

code with two scalars.

• Problem:

Given a rod of length n inches and a table of prices pi for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 5 8 9 10 17 17 24 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g) 18

• Problem:

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 6 8 4 price p_i 30 9 10 17 17 24 5 8 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g) 20

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 6 8 4 30 price p_i 8 9 10 17 17 24 5 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g)

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 8 9 10 17 17 24 5 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g)

• Problem:

• Problem:

• Problem:

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 5 8 9 10 17 17 24 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g) 5-3510: Design and Analysis of Algorithms | Summer 2022 26

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all. length *i*

price p_i

(a)

5

1 1

4

9

3

8

(b)

5

(f)

1

5

5

10

6

17

(c)

(g)

5

17

1

20

• Example:

Consider n=4 How many ways to cut up a rod of length n?

- At each integer distance i inches from the left

end, we have an independent option of "cutting" or "not cutting", for $i = 1, ..., n-1: 2^{n-1}$ (e)

- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is maximized.

9

24

(d)

(h)

10

30

length *i* • Example: price p_i • How many ways to cut up a rod of length n? 2ⁿ⁻¹ • Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, (b) (a) (c) (d) for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2}$ $p_{i_2} + \dots + p_{i_k}$ is the maximum revenue. (e) (f) (g) (h) $n = 0 \implies r_0 = 0$ no cut

$$\begin{split} n &= 1 \implies r_1 = \begin{bmatrix} \widehat{p_1} \end{bmatrix} \\ n &= 2 \implies r_2 = \max\left(\begin{bmatrix} \operatorname{no} \operatorname{cut} \\ \widehat{p_2} \end{bmatrix}, \begin{bmatrix} \operatorname{cut} @ \ i = 1 & \max \operatorname{revenue} \operatorname{from} n - 1 \\ \widehat{p_1} &+ & \widehat{r_1} \end{bmatrix} \right) \\ n &= 3 \implies r_3 = \max\left(\begin{bmatrix} \operatorname{no} \operatorname{cut} \\ \widehat{p_3} \end{bmatrix}, \begin{bmatrix} \operatorname{cut} @ \ i = 2 & \max \operatorname{revenue} \operatorname{from} n - 2 \\ \widehat{p_2} &+ & \widehat{r_1} \end{bmatrix}, \begin{bmatrix} \operatorname{cut} @ \ i = 1 & \max \operatorname{revenue} \operatorname{from} n - 1 \\ \widehat{p_1} &+ & \widehat{r_2} \end{bmatrix} \right) \\ n &= 4 \implies r_4 = \max\left(\begin{bmatrix} p_4 \end{bmatrix}, \begin{bmatrix} p_3 + r_1 \end{bmatrix}, \begin{bmatrix} p_2 + r_2 \end{bmatrix}, \begin{bmatrix} p_1 + r_3 \end{bmatrix} \right) \end{split}$$

CS-3510: Design and Analysis of Algorithms | Summer 2022

. . .

length *i*

2

3

0

4

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

0

5

6

7

8

9

10

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

length *i*

price p_i

(a)

(e)

1

5

2

5

8

(b)

(f)

9

1

3

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2}$ $p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022

7

17

5

(c)

(g)

(0)

5

10

6

17

8

20

4

0

0

9

24

(d)

(h)

(0)

 $\left(0 \right)$

10

30

length *i*

price p_i

9

(a)

(e)

5

1

1

2

3

5

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

$$n = 0 \implies r_0 = 0$$

$$n = 1 \implies r_1 = \boxed{p_1 + r_0}$$

$$n = 2 \implies r_2 = \max\left(\boxed{p_2 + r_0}, \boxed{p_1 + r_1}\right)$$

$$n = 3 \implies r_3 = \max\left(\boxed{p_3 + r_0}, \boxed{p_2 + r_1}, \boxed{p_1 + r_2}\right)$$

$$n = 4 \implies r_4 = \max\left(\boxed{p_4 + r_0}, \boxed{p_3 + r_1}, \boxed{p_2 + r_2}, \boxed{p_1 + r_3}\right)$$

...

 $n \implies r_n = \max_{1 \le i \le n} \left(\boxed{p_i + r_{n-i}} \right)$ Recurrence relation \implies Recursive algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022

7

6

8

9

10

Running time?

9

(a)

(e)

1

- Rod of length n
- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2}$ $p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$
- Base case: $r_0 = 0$
- Recursive (brute force) algorithm

CUT-ROD(p, n)1 **if** n == 0

- return 0 $q = -\infty$
- for i = 1 to n
- $q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))$

• Rod of length n

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i}), r_0 = 0$
- Recursive (brute force) algorithm

Cu	JT-ROD(p,n)
1	$\mathbf{if} \ n == 0$
2	return 0
3	$q = -\infty$
4	for $i = 1$ to n
5	$q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$
6	return q

Running time?

- T(n) = number of [recursive] calls to Cut-Rod function
- T(n) = number nodes in the subtree of r_n in the recursion tree

• Rod of length n

- How many ways to cut up a rod of length n? $2^{n-1} = #$ of leaves
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

• Recurrence relation:
$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}), r_0 = 0$$

• Recursive (brute force) algorithm

Cu	UT-ROD(p,n)
1	$\mathbf{if} \ n == 0$
2	return 0
3	$q = -\infty$
4	for $i = 1$ to n
5	$q = \max(q, p[i] + C \mathbf{U})$
6	return a

Running time?

- T(n) = number of [recursive] calls to Cut-Rod function
- T(n) = number nodes in the recursion tree
- $T(n) = 1 + 1 + 2 + 4 + 8 + \dots$
- JT-ROD(p, n i) $T(n) = 1 + \sum_{i=0}^{n-1} T(i) = 1 + \frac{2^{n-1}}{2-1} = 2^{n}$
 - $T(n) \in \Theta(2^n)$ Exponential (the same subproblems solved repeatedly)

DP Example: (3) Rod-cutting

- DP solution
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i}),$
- Base case: $r_0 = 0$ MEMOIZED-CUT-ROD(p, n)Top-down (recursive with 1 let r[0...n] be a new array 2 for i = 0 to nmemoization) 3 $r[i] = -\infty$ 4 return MEMOIZED-CUT-ROD-AUX(p, n, r)MEMOIZED-CUT-ROD-AUX(p, n, r)1 if $r[n] \ge 0$ **return** r[n]**if** n == 03 q = 0else $q = -\infty$ 5 for i = 1 to n6 $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ 8 r[n] = q9 return q

DP Example: (3) Rod-cutting

- DP solution
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i}),$
- Base case: $r_0 = 0$ MEMOIZED-CUT-ROD(p, n)1 let r[0...n] be a new array 2 **for** i = 0 **to** n3 $r[i] = -\infty$ 4 return MEMOIZED-CUT-ROD-AUX(p, n, r)MEMOIZED-CUT-ROD-AUX(p, n, r)if $r[n] \geq 0$ **return** r[n]**if** n == 03 q = 0else $q = -\infty$ 5 6 for i = 1 to n
 - $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n i, r))$
 - $8 \quad r[n] = q$ 9 return q

Top-down (recursive with memoization)

r₀ 0

3

0

0

BOTTOM-UP-CUT-ROD(p, n)Bottom-up1let r[0 ...n] be a new array(iterative)2r[0] = 0(iterative)3for j = 1 to n(iterative)4 $q = -\infty$ (iterative)5for i = 1 to j(iterative)6 $q = \max(q, p[i] + r[j - i])$ 7r[j] = q8return r[n]

(0)

0

CS-3510: Design and Analysis of Algorithms | Summer 2022

0

Dynamic Programming (DP)

- Dynamic Programming Elements
 - DP often (not always!) applicable to optimization problems
 - Large number of possible solutions
 - Must find the "best" one (maximum or minimum)
 - "Optimal substructure"
 - Finding the optimal solution involves finding the optimal solution to subproblems
 - The subproblems are the same as the original problem, but are "smaller" (e.g., involve smaller-sized input data) <u>Similar to D&C</u>
 - "Overlapping subproblems" Key difference to D&C
 - Different subproblems operate on the same input data
 - Allows exploitation of memoization

Dynamic Programming (DP)

• Dynamic Programming Recipe

- 1. Show the problem has <u>optimal substructure</u>, i.e., the optimal solution can be constructed from optimal solutions to subproblems (This step is concluded by writing the <u>recurrence relation</u> and its <u>base case</u>).
- 2. Show subproblems are <u>overlapping</u>, i.e., subproblems may be encountered many times but note the total number of <u>distinct subproblems</u> is polynomial (Recall the recursion tree for Fibonacci and Rod-cutting problems, where the total number of distinct subproblems was linear, i.e., O(n)).
- 3. Construct an algorithm that computes the optimal solution to each subproblem only once and reuses the stored result all other times (This can be done by using either top-down (recursive+memoization) or bottom-up (iterative) approach).
- 4. Analysis: show that <u>time and space complexity is polynomial</u>.

DP Example: (4) Red-Black Game

• You are given a sequence of n positive numbers $(a_1, a_2, ..., a_n)$. Initially, they are all colored black. At each move, you choose a black number a_k and color it and its immediate neighbors (if any) red (the immediate neighbors are the elements a_{k-1} , a_{k+1}). You get a_k points for this move. The game ends when all numbers are colored red. The goal is to get as many points as possible.

DP Example: (4) Red-Black Game

- Going for the most valuable remaining black number?
 - Counter example: $A = [7, 3, 90, 100, 80, 5] \rightarrow A = [7, 3, \frac{90}{2}, 100, \frac{80}{2}, 5]$
- DP Solution:
 - Original problem is to select from n numbers s.t. maximizing the total value.
 - The optimal solution to the original problem as OPT(n)
 - Subproblem: find OPT(i), where we select from the first i numbers $a_1, a_2, ..., a_i$
 - The solution OPT(i) either incudes a_i or not includes a_i :
 - <u>OPT(i) includes a</u>_i. Then OPT(i) can not include a_{i-1} as a_{i-1} will be colored red. So, OPT(i) would include an optimal solution for numbers a_1 , ..., a_{i-2} , that is, OP T (i – 2).
 - <u>OPT(i) does NOT includes a_i </u>. Then OPT(i) is an optimal solution for numbers $a_1, ..., a_{i-1}$.
 - Recurrence relation:
 - OPT(i) = max{OPT(i-2) + a_i , OPT(i-1)}
 - $OPT(0) = 0, OPT(1) = a_1$

Multidimensional DP

- "State" variables = variables needed for defining the recurrence relation
- Dimension of a DP algorithm = number of state variables
- So far, only one state variable \rightarrow one-dimensional DP
 - Fibonacci: Fib[n] = Fib[n 1] + Fib[n 2]
 - Rod-cutting: revenue[n] = $\max_{1 \le i \le n} (\operatorname{prices}[i] + \operatorname{revenue}[n i])$
- Sometimes, we need multiple state variables (dimensions) to describe and solve the problem.
 - Two dimensional (more common).
 - Longest common subsequence (LCS), knapsack, coin-changing, etc.
 - Three dimensional:
 - All-pairs shortest path (Floyd-Warshall)

DP Example: (5) Longest Common Subsequence

Motivation

- In biology, DNA strands represented as strings of bases: adenine (A), guanine (G), cytosine (C), thymine (T)
- For example: ACCGGTCGAGTGC...
- One operation of interest is to determine the "similarity" of two different strings

Longest Common Subsequence (LCS)

• Sequence is an ordered list of elements

 $X = \langle x_1, x_2, \dots x_m \rangle$

• Z is a subsequence of X if there is a strictly increasing sequence of indices i_1, i_2, \dots, i_k such that $z_1 = x_{i1}, z_2 = x_{i2}, \dots, z_k = x_{ik}$

Example: $X = \langle A, B, C, B, D, A, B \rangle$ $Z = \langle B, C, D, B \rangle$ is a subsequence of X $Z = \langle A, C, A, D \rangle$ is not a subsequence of X

• In other words, Z can be constructed by starting with X, and deleting zero or more elements

• Given two sequences:

$$X = Y =$$

Z is a common subsequence of X and Y if Z is a subsequence of both X and Y. Compute: LCS(X,Y) = longest common subsequence of X and Y

Example:

 $X = \langle A, B, C, B, D, A, B \rangle \qquad Y = \langle B, D, C, A, B, A \rangle$

<B, C, A> is a common subsequence of X and Y

<B, C, A, B> is an LCS of X and Y

<B, C, B, A> and <B, D, A, B> are also LCS's of X and Y

(LCS may not be unique!)

- Brute-force solution:
 - Enumerate all subsequences of X
 - For each such subsequence, is it also a subsequence of Y?
 - Pick the longest one that is a subsequence of both X and Y
- What is the runtime of the brute-force solution?
 - m elements in X
 - n elements in Y

• Hint:

- How many subsequences in X?
- How many comparisons needed?

- Brute-force solution:
 - Enumerate all subsequences of X
 - For each such subsequence, is it also a subsequence of Y?
 - Pick the longest one that is a subsequence of both X and Y
- What is the runtime of the brute-force solution?
 - m elements in X
 - n elements in Y

• Hint:

- How many subsequences in X?
- How many comparisons needed?

- There are <u>2^m subsequences in X (each element</u> of X is either in the subsequence or not)
- There are <u>n comparisons</u> needed for each subsequence
- <u>n * 2^m</u> comparisons
- Exponential runtime!

 Given a sequence: X = <x₁, x₂, ... x_m> X_i = <x₁, x₂, ... x_i> is defined as the ith prefix of X, i=0, 1, ...m (X_i is the first i elements of X)

- Example: X = <A, B, C, B>
- $X_0 = <>$
- $X_1 = <A>$
- $X_2 = <A, B>$
- X₃ = <A, B, C>
- $X_4 = \langle A, B, C, B \rangle$

 Given a sequence: X = <x₁, x₂, ... x_m> X_i = <x₁, x₂, ... x_i> is defined as the ith prefix of X, i=0, 1, ...m (X_i is the first i elements of X)

- Example: X = <A, B, C, B>
- $X_0 = <>$
- $X_1 = <A>$
- X₂ = <A, B>
- X₃ = <A, B, C>
- $X_4 = \langle A, B, C, B \rangle$

- Key Observation:
- The LCS of sequences X and Y can be found by finding the LCS of prefixes of X and Y
- This leads to development of a recursive solution to computing LCS

- Let $X = \langle A, B, C, B, D, A, B, x_8 \rangle (m=8)$ $Y = \langle B, D, C, A, B, y_6 \rangle (n=6)$ $LCS(X,Y) = Z = \langle z_1, z_2, \dots z_k \rangle$
- Suppose $x_8 = y_6$:

Then $Z = LCS(X, Y) = LCS(X_7, Y_5) + z_k$, where $z_k = x_8 (= y_6)$

• Suppose $x_8 \neq y_6$:

if $z_k \neq x_8$ then $Z = LCS(X_7, Y)$

if $z_k \neq y_6$ then $Z = LCS(X, Y_5)$

- In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
- Subproblems same as original, but with smaller input data

- Let $X = \langle A, B, C, B, D, A, B, x_8 \rangle$ (m=8) $Y = \langle B, D, C, A, B, y_6 \rangle$ (n=6) $LCS(X,Y) = Z = \langle z_1, z_2, \dots z_k \rangle$
- Suppose $x_8 = y_6$:

Then $Z = LCS(X, Y) = LCS(X_7, Y_5) + z_k$, where $z_k = x_8 (= y_6)$

• Suppose $x_8 \neq y_6$:

if $z_k \neq x_8$ then $Z = LCS(X_7, Y)$

if $z_k \neq y_6$ then $Z = LCS(X, Y_5)$

- In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
- Subproblems same as original, but with smaller input data

CS-3510: Design and Analysis of Algorithms | Summer 2022

The last element of X
 and Y is the last element
 of the solution

52

- Let $X = \langle A, B, C, B, D, A, B, x_8 \rangle (m=8)$ $Y = \langle B, D, C, A, B, y_6 \rangle (n=6)$ $LCS(X,Y) = Z = \langle z_1, z_2, \dots z_k \rangle$
- Suppose $x_8 = y_6$:

Then $Z = LCS(X, Y) = LCS(X_7, Y_5) + z_k$, where $z_k = x_8 (= y_6)$

• Suppose $x_8 \neq y_6$:

Continue search using prefix of X

if $z_k \neq x_8$ then $Z = LCS(X_7, Y)$

if $z_k \neq y_6$ then $Z = LCS(X, Y_5)$

- In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
- Subproblems same as original, but with smaller input data

- Let $X = \langle A, B, C, B, D, A, B, x_8 \rangle (m=8)$ $Y = \langle B, D, C, A, B, y_6 \rangle (n=6)$ $LCS(X,Y) = Z = \langle z_1, z_2, \dots z_k \rangle$
- Suppose $x_8 = y_6$:

Then $Z = LCS(X, Y) = LCS(X_7, Y_5) + z_k$, where $z_k = x_8 (= y_6)$

• Suppose $x_8 \neq y_6$:

if $z_k \neq x_8$ then $Z = LCS(X_7, Y)$ if $z_k \neq y_6$ then $Z = LCS(X, Y_5)$

Continue search using prefix of Y

- In other words, LCS(X,Y) can be built of the LCS of the prefixes of X and Y
- Subproblems same as original, but with smaller input data

LCS: Recurrence

• Let $X = \langle A, B, C, B, D, A, B, x_8 \rangle (m=8)$ $Y = \langle B, D, C, A, B, y_6 \rangle (n=6)$ $LCS(X,Y) = Z = \langle z_1, z_2, \dots z_k \rangle$ E

If $(x_m == y_n)$: $z_k = x_m$; $compute LCS (X_{m-1}, Y_{n-1})$ Else: $compute LCS (X_{m-1}, Y)$ and LCS (X, Y_{n-1}) pick the longer subsequence of the two

Overlapping subproblems

• The above subproblems share many computations.

• For example, computing LCS (X_{m-1} , Y) and LCS (X, Y_{n-1}) both involve computing LCS (X_{m-1} , Y_{n-1})

LCS: Recurrence

- Compute the length of the LCS
 - Involves computing LCS of prefixes to X and Y
- Let $c[i,j] = LCS(X_i, Y_j)$

• Data structure used for memoization

If $(x_m == y_n)$: $z_k = x_m$; •compute LCS (X_{m-1}, Y_{n-1}) Else:

compute LCS (X_{m-1}, Y) and LCS (X, Y_{n-1})
pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and $x_i = y_j$ = max (c[i, j-1], c[i-1, j]) if i>0, j>0, and $x_i \neq y_j$

• c[m,n] is the length of LCS(X, Y)

LCS: Recurrence

- Compute the length of the LCS
 - Involves computing LCS of prefixes to X and Y
- Let $c[i,j] = LCS(X_i, Y_j)$

• Data structure used for memoization

If $(x_m == y_n)$: $z_k = x_m$; compute LCS (X_{m-1}, Y_{n-1}) Else:

compute LCS (X_{m-1}, Y) and LCS (X, Y_{n-1})
 pick the longer subsequence of the two

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and $x_i = y_j$ = max (c[i, j-1], c[i-1, j]) if i>0, j>0, and $x_i \neq y_j$

• c[m,n] is the length of LCS(X, Y)

LCS: Computation

• c[i,j] = 0, if (i=0 or j=0) = c[i-1,j-1] + 1, if i>0, j>0, and $x_i = y_j$ = max (c[i,j-1], c[i-1,j]) if i>0, j>0, and $x_i \neq y_i$

LCS: Example

Determine longest common subsequence of X and Y

- X = ABCB
- Y = BDCAB

LCS(X, Y) = BCBX = A B C BY = B D C A B

for (i=0; i<=m; i++) c[i,0]=0; for (j=0; j<=n; j++) c[0,j]=0;</pre>

if (x_i==y_j) c[i][j]=c[i-1][j-1]+1; else: c[i][j] = max(c[i-1][j],c[i][j-1])

- The previous step determined the *length* of LCS, but not the LCS itself.
- Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
- For each c[i,j] we can record how it was acquired:

annotate: found("F"), advance X("X"), advance Y("Y") for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if $(x_i = = y_j)$: c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y";

• Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- So, we can start from *c[m,n]* and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of the LCS computed)
- When i=0 or j=0 (i.e., we reached the beginning), output the remembered letters in reverse order

annotate: found("F"), advance X("X"), advance Y("Y") for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if $(x_i = = y_j)$: c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y";

annotate: found("F"), 11 advance X("X"), advance Y("Y") 11 for (i=1; i<=m; i++)</pre> for (j=1; j<=n; j++)</pre> if $(x_i = = y_i)$: c[i][j]=c[i-1][j-1]+1; b[i][j]="F"; else if (c[i-1][j]>=c[i][j-1]) c[i][j] = c[i-1][j];b[i][j]="X"; else c[i][j] = c[i][j-1];b[i][j]="Y";

LCS: Output (Printing) the LCS

- // annotate: found("F"),
- // advance X("X"),advance Y("Y")
- for (i=1; i<=m; i++)</pre>
 - for (j=1; j<=n; j++)
 - if $(x_i == y_j)$:
 - c[i][j]=c[i-1][j-1]+1;
 - b[i][j]="F";
 - else if (c[i-1][j]>=c[i][j-1])
 - c[i][j] = c[i-1][j];
 - b[i][j]="X";
 - else
 - c[i][j] = c[i][j-1];
 - b[i][j]="Y";

```
// to print LCS, call Print LCS:
Print LCS(b, X, m, n);
// follow annotations to print out
Print_LCS(b, X, i, j):
 if ((i==0) || (j==0)) return;
  if (b[i][j] == "F")
   Print_LCS(b, X, i-1, j-1);
   print (x);
 else if (b[i][j] == "X")
   Print_LCS(b, X, i-1, j);
 else
   Print LCS(b, X, i, j-1);
```


LCS: Running Time

- What is the execution time for each step of this algorithm?
 - Step 1: Computing LCS

• Step 2: Printing

LCS: Running Time

- What is the execution time for each step of this algorithm?
 - Step 1: Computing LCS
 - O(m×n) to fill in matrix
 - Step 2: Printing
 O(m+n)

DP: Summary

- Dynamic programming is a general algorithm approach similar to divide and conquer, but with <u>shared/overlapped</u> subproblems rather than disjoint ones.
- Efficiency is obtained by recording (memoization) the solution of subproblems rather than recomputing them.
- Dynamic programming applicable to many optimization problems
- Two main elements:
 - Optimal substructure
 - Overlapping subproblems

References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
 - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
 - Slides by Elizabeth Cherry, Georgia Institute of Technology.

