CS-3510: Design and Analysis of Algorithms

Dynamic Programming I

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

A Note about Recursive Algorithms

- In general, recursive algorithms can be used in various setups:
 - Backtracking
 - Ex. Enumerating all subsets of a given set or array
 - Usually (not always!), in these cases we can expect an exponential runtime O(aⁿ), where a is the number of possible options to choose at each step which is equal to the number branches after each node in the recursion tree.
 - Divide-and-Conquer (D&C)
 - Dynamic programming (DP)
 - Traversing a graph or tree using the depth-first search (DFS) approach

- Nothing to do with computer "programming"; a term defined by Richard Bellman back in the 1950's
 - "Dynamic" captures the time-varying aspect of the solution approach
 - "Programming" because "it sounded impressive"; real interest was in defining schedules and plans (same sense as linear *programming*)
- Not a particular algorithm, but rather an algorithmic paradigm for developing algorithms.

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
 - Divide problem into subproblems
 - Recursively solve the subproblems and aggregate solutions <u>not overlap</u>

Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)

Note: The

subproblems do

• Dynamic Programming vs. Divide-and-Conquer

Subproblems overlap

Subproblems do not overlap

The Nth Fibonacci number F_N is defined as:

- $F_0 = 0$
- $F_1 = 1$
- for N > 1, $F_N = F_{N-1} + F_{N-2}$

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Fib(n):

- if n==0: return 0
- if n==1: return 1

```
return fib(n-1) + fib(n-2)
```

- Recursive relation
- Recursion tree
- Let's calculate Fib(6)

12

13

- Using dynamic programming paradigm:
 - Save computed value of Fib(i) in dp[i]
 - If Fib(i) has already been computed, use dp[i] rather than recomputing it

```
Fib(n):
    dp = [0]*n  # initialize dp[i]=0
    recur(i):
        if n==0: return 0
        if n==1: return 1
        if dp[i]==0:
            dp[i] = recur(i-1) + recur(i-2)
        return dp[i]
        return recur(n)
```

Time-memory trade-off

Time complexity?

Dynamic Programming

- Top-down vs. Bottom-up Approach
 - The development approach just described is called "top-down" dynamic programming Recursive
 - Begin with problem description
 - Recursively subdivide problem into subproblems
 - i.e., begin at root of tree and work downwards
 - Another approach is "bottom-up" dynamic programming
 - Start at the leaf nodes of tree; solution is simple
 - Build up solution to larger problem from solutions of the simpler subproblems

Iterative

memoization

with

• Top-down (recursive with memoization) Bottom-up (iterative)

<pre>dp = [0]*n # initialize dp[i]=0 dp = [0]*n # initialize dp[i] recur(i):</pre>	=0
dp[0] = 0	
if n==0: return 0 dp[1] = 1	
if n==1: return 1 for i=2,,n:	
if $dp[i] = 0$: dp[i] = dp[i-1] + dp[i-2]	
dp[i] = recur(i-1) + recur(i-2) return dp[n]	
return dp[i] Do we need to store all values?	

return recur(n)

• Top-down (recursive with memoization) Bottom-up (iterative)

Fib(n): Time: O(n), Space: O(n)	Fib(n): Time: O(n), Space: O(n)		
<pre>dp = [0]*n # initialize dp[i]=0</pre>	<pre>dp = [0]*n # initialize dp[i]=0</pre>		
recur(i):	dp[0] = 0		
if n==0: return 0	dp[1] = 1		
if n==1: return 1	for i=2,,n:		
if dp[i]==0:	dp[i] = dp[i-1] + dp[i-2]		
dp[i] = recur(i-1) + recur(i-2)	return dp[n]		
return dp[i]	Each computation needs only the last two Fibonacci numbers!		
return recur(n)	Re-write the code with two scalars.		

• Top-down (recursive with memoization)

Bottom-up (iterative)

Fib(n): Time: O(n), Space: O(n)	Fib(n): Time: O(n), Space: O(1)
<pre>dp = [0]*n # initialize dp[i]=0</pre>	f1 = 0
recur(i):	$f_{2} = 1$
if n==0: return 0	for i=2,,n:
if n==1: return 1	f = f1 + f2
if dp[i]==0:	f1 = f2; f2 = f
dp[i] = recur(i-1) + recur(i-2)	return f
return dp[i]	Each computation needs only the last two Fibonacci numbers!
return recur(n)	Re-write the code with two scalars.
	ke-write the code with two scalars.

• So, which one is better?

Demo: Fibonacci

Top-down (recursive with memoization)	Bottom-up (iterative) (a.k.a tabulation)
 Starts with the root of the recursion tree Implemented as recursive function [Memoization:] The result (returned values) of each recursive call will be stored in a data 	 Starts with base cases Implemented with iteration (loop) <u>Main advantage:</u> Avoiding the recursion overhead
 dictionary in Python) <u>Main advantage:</u> 	(recursive calls). So, in practice, to program may run slightly faster.
- Easter (more intuitive) to write, as we don't need to know the ordering of the recursion calls and sub-problems	- Sometimes it allows to use less memory.

• Problem:

- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either 1 or 2 steps.
- In how many distinct ways we can reach to the top?

• Problem:

- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either 1 or 2 steps.
- In how many distinct ways we can reach to the top?

DP Solution:

- Let dp[i] = number of distinct ways to reach i^{th} step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s):
 - dp[0] = 0, (when we are on the ground, no stairs)
 - dp[1] = 1, (only one way to reach step 1)
 - dp[2] = 2 (we have two ways to reach step 2)

• Top-down (recursive with memoization)

Bottom-up (iterative)

StairClimbing(n):	Time: O(n), Space: O(n)	StairClimbing(n):	Time: O(n), Space: O(n)
dp = [0]*(n+1) #	initialize dp[i]=0	dp = [0]*(n+1)	<pre># initialize dp[i]=0</pre>
recur(i):		dp[0] = 0	
if n==0: return	0	dp[1] = 1	
if n==1: return	1	dp[2] = 2	
if n==2: return	2	for i=3,,n:	
if dp[i]==0:		dp[i] = dp[i-1] + dp[i-2]
dp[i] = recu	r(i-1) + recur(i-2)	return dp[n]	
return dp[i]			
return recur(n)		-Similar to Fibonace	ci we can re-write the

code with two scalars.

• Top-down (recursive with memoization)

Bottom-up (iterative)

StairClimbing(n): Time: O(n), Space: O(n)		StairClimbing(n):	Time: O(n), Space: O(1)
dp = [0]*(n+1) #	<pre>initialize dp[i]=0</pre>	if n < 3: return n	
recur(i):		f1 = 1	
if n==0: return	0	f2 = 2	
if n==1: return	1	for i=3,,n:	
if n==2: return	2	f = f1 + f2	
if dp[i]==0:		f1 = f2; f2 =	f
dp[i] = recur	c(i-1) + recur(i-2)	return f	
return dp[i]			
return recur(n)		Similar to Fibonacci v	ve can re-write the

code with two scalars.

• Problem:

Given a rod of length n inches and a table of prices pi for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 5 8 9 10 17 17 24 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g)

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 6 8 4 price p_i 30 9 10 17 17 24 5 8 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g) 5-3510: Design and Analysis of Algorithms | Summer 2022 30

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 6 8 4 30 price p_i 8 9 10 17 17 24 5 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g)

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 8 9 10 17 17 24 5 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g)

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

• Example: length *i* 2 3 5 9 10 4 6 8 price p_i 30 5 8 9 10 17 17 24 20 Consider n=4 9 8 5 5 8 (a) (b) (c) (d) 5 5 5 (e) (f) (h) (g) 5-3510: Design and Analysis of Algorithms | Summer 2022 36

• Problem:

Given a rod of length n inches and a table of prices p_i for i=1, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all. length *i*

price p_i

(a)

5

1 1

4

9

3

8

(b)

5

(f)

1

5

5

10

6

17

(c)

(g)

5

17

1

20

• Example:

Consider n=4 How many ways to cut up a rod of length n?

- At each integer distance i inches from the left

end, we have an independent option of "cutting" or "not cutting", for i = 1, ..., n-1: 2^{n-1} (e)

- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is maximized.

9

24

(d)

(h)

10

30

length *i* • Example: price p_i • How many ways to cut up a rod of length n? 2ⁿ⁻¹ • Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, (b) (a) (c) (d) for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2}$ $p_{i_2} + \dots + p_{i_k}$ is the maximum revenue. (e) (f) (g) (h) $n = 0 \implies r_0 = 0$ no cut

CS-3510: Design and Analysis of Algorithms | Summer 2022

. . .

length *i*

 r_2

2

2

3

4

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

(0)

0

0

5

6

7

8

 $\begin{bmatrix} 0 \end{bmatrix}$

9

10

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $n = 0 \implies r_0 = 0$ $n = 1 \implies r_1 = p_1$ $n = 2 \implies r_2 = \max\left(p_2, p_1 + r_1\right)$ $n = 3 \implies r_3 = \max\left(p_3, p_2 + r_1, p_1 + r_2\right)$ $n = 4 \implies r_4 = \max\left(p_4, p_3 + r_1, p_2 + r_2, p_1 + r_3\right)$

length *i*

price p_i

(a)

(e)

1

5

2

5

8

(b)

(f)

9

1

 r_3

0

3

• Example:

n

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

 $\Rightarrow r_{n} = \max\left([p_{n} + r_{0}], [p_{n-1} + r_{1}], [p_{n-2} + r_{2}], \dots, [p_{1} + r_{n-1}]\right) = \max_{1 \le i \le n}\left([p_{i} + r_{n-i}]\right)$

CS-3510: Design and Analysis of Algorithms | Summer 2022

7

17

5

(c)

(g)

(0)

5

10

6

17

8

20

4

0

0

9

24

(d)

(h)

(0)

 $\left(0 \right)$

10

30

length *i*

price p_i

9

(a)

(e)

5

1

1

2

3

5

• Example:

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

$$n = 0 \implies r_0 = 0$$

$$n = 1 \implies r_1 = \boxed{p_1 + r_0}$$

$$n = 2 \implies r_2 = \max\left(\boxed{p_2 + r_0}, \boxed{p_1 + r_1}\right)$$

$$n = 3 \implies r_3 = \max\left(\boxed{p_3 + r_0}, \boxed{p_2 + r_1}, \boxed{p_1 + r_2}\right)$$

$$n = 4 \implies r_4 = \max\left(\boxed{p_4 + r_0}, \boxed{p_3 + r_1}, \boxed{p_2 + r_2}, \boxed{p_1 + r_3}\right)$$

...

 $n \implies r_n = \max_{1 \le i \le n} \left(\boxed{p_i + r_{n-i}} \right)$ Recurrence relation \implies Recursive algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022

7

6

8

9

10

- Rod of length n
- How many ways to cut up a rod of length n? 2^{n-1}
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$
- Base case: $r_0 = 0$
- Recursive (brute force) algorithm

CUT-ROD(p, n) $1 \quad \text{if } n == 0$

- $\begin{vmatrix} 2 & \text{return } 0 \\ 3 & q = -\infty \end{vmatrix}$
- 4 for i = 1 to n

```
5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))
6 return q
```


• Rod of length n

- How many ways to cut up a rod of length n? 2ⁿ⁻¹
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i}), r_0 = 0$
- Recursive (brute force) algorithm

Cu	JT-ROD(p,n)
1	$\mathbf{if} \ n == 0$
2	return 0
3	$q = -\infty$
4	for $i = 1$ to n
5	$q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))$
6	return q

Running time?

T(n) = number of [recursive] calls to Cut-Rod function

 $r_0(0)$

• T(n) = number nodes in the subtree of r_n in the recursion tree

 r_3

3

 $\left(0\right)$

0

• Rod of length n

- How many ways to cut up a rod of length n? $2^{n-1} = #$ of leaves
- Find an optimal decomposition $n = i_1 + i_2 + \dots + i_k$, for some $1 \le k \le n$ such that the revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ is the maximum revenue.

• Recurrence relation:
$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}), r_0 = 0$$

• Recursive (brute force) algorithm

Ct	JT-ROD(p,n)
1	$\mathbf{if} \ n == 0$
2	return 0
3	$q = -\infty$
4	for $i = 1$ to n
5	$q = \max(q, p[i] + CU)$
6	roturn a

Running time?

- T(n) = number of [recursive] calls to Cut-Rod function
- T(n) = number nodes in the recursion tree
- $T(n) = 1 + 1 + 2 + 4 + 8 + \dots$
- JT-ROD(p, n i) $T(n) = 1 + \sum_{i=0}^{n-1} T(i) = 1 + \frac{2^{n-1}}{2-1} = 2^{n}$
 - $T(n) \in \Theta(2^n)$ Exponential (the same subproblems solved repeatedly)

0

0

- DP solution
- Recurrence relation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i}),$
- Base case: $r_0 = 0$ MEMOIZED-CUT-ROD(p, n)Top-down (recursive with 1 let r[0...n] be a new array 2 for i = 0 to nmemoization) 3 $r[i] = -\infty$ 4 return MEMOIZED-CUT-ROD-AUX(p, n, r)MEMOIZED-CUT-ROD-AUX(p, n, r)1 if $r[n] \ge 0$ **return** r[n]**if** n == 03 q = 0else $q = -\infty$ 5 for i = 1 to n6 $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ 8 r[n] = q9 return q

- Dynamic Programming vs. Divide-and-Conquer Divide-and-Conquer:
 - Divide problem into subproblems
 - Recursively solve the subproblems and aggregate solutions

Dynamic Programming

- Divide problem into subproblems, recursively solve them
- Subproblems <u>overlap</u>
- When a subproblem has been solved, remember its solution and reuse that solution rather than resolving it later (memoization)

Note: The subproblems <u>do not overlap</u>

- Dynamic Programming Elements
 - DP often applicable to optimization problems
 - Large number of possible solutions
 - Must find the "best" one (maximum or minimum)
 - Problem possesses an "optimal substructure"
 - Finding the optimal solution involves finding the optimal solution to subproblems
 - The subproblems are the same as the original problem, but are "smaller" (e.g., involve smaller-sized input data) <u>Similar to D&C</u>
 - Subproblems overlap <u>Key difference to D&C</u>
 - Different subproblems operate on the same input data
 - Allows exploitation of memoization

• Dynamic Programming Recipe

- 1. Show the problem has <u>optimal</u> substructure, i.e., the optimal solution can be constructed from optimal solutions to subproblems (This step is concluded by writing the <u>recurrence relation</u> and its <u>base case</u>).
- 2. Show subproblems are <u>overlapping</u>, i.e., subproblems may be encountered many times but the total number of <u>distinct subproblems</u> is polynomial (Recall the recursion tree for Fibonacci and Rod-cutting problems, where the total number of distinct subproblems was linear, i.e., O(n)).
- 3. Construct an algorithm that computes the optimal solution to each subproblem only once and reuses the stored result all other times (This can be done by using either top-down (recursive) or bottom-up (iterative) approach).
- 4. Analysis: show that <u>time and space</u> complexity is <u>polynomial</u>.

References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
 - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
 - Slides by Elizabeth Cherry, Georgia Institute of Technology.

