
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Dynamic Programming I

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο 𝑎! , where
𝑎 is the number of possible options to choose at each step which is equal to the number
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

Dynamic Programming (DP)

• Nothing to do with computer “programming”; a term defined by

Richard Bellman back in the 1950’s

• “Dynamic” captures the time-varying aspect of the solution approach

• “Programming” because “it sounded impressive”; real interest was in defining

schedules and plans (same sense as linear programming)

• Not a particular algorithm, but rather an algorithmic paradigm for

developing algorithms.

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The
subproblems do
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

problem

subproblem

subsub-
problem

subsub-
problem

subproblem

subsub-
problem

subsub-
problem

Subproblems overlap Subproblems do not overlap

DP Example: (1) Fibonacci
The Nth Fibonacci number FN is defined as:
• F0 = 0
• F1 = 1
• for N > 1, FN = FN-1 + FN-2
Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

- Recursive relation
- Recursion tree
- Let’s calculate Fib(6)

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)

Fib (2) X 5

Fib (3) X 3

Fib (4) X 2

Time complexity? Exponential!

DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

• Time complexity: (CLRS 4-4)
• Recurrence: T(n) =T(n−1) + T(n−2) + 𝑂(1)

• T(n) ∈ O(!" #
$

%
) ∈ O(2%)

• Φ = !" #
$ ≈ 1.618 is the “golden ration”

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (5)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Time complexity? Exponential!

Time: O(2n), Space: O(1)

https://en.wikipedia.org/wiki/Golden_ratio

DP Example: (1) Fibonacci
• Using dynamic programming paradigm:
• Save computed value of Fib(i) in dp[i]
• If Fib(i) has already been computed, use dp[i] rather than recomputing it

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n) Time complexity?

Time-memory trade-off

DP Example: (1) Fibonacci

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)Each
 will b

e ca
lculate

d only once

Retrun
dp[1]

Retrun
dp[2]

Retrun
dp[3]

Retrun
dp[4]

Time complexity? O(n)

Dynamic Programming
• Top-down vs. Bottom-up Approach

• The development approach just described is called “top-down”
dynamic programming
• Begin with problem description
• Recursively subdivide problem into subproblems
• i.e., begin at root of tree and work downwards

• Another approach is “bottom-up” dynamic programming
• Start at the leaf nodes of tree; solution is simple
• Build up solution to larger problem from solutions of the simpler

subproblems

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Recursive
with
memoization

Iterative

DP Example: (1) Fibonacci
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Do we need to store all values?

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (1) Fibonacci
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Each computation needs only the last
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (1) Fibonacci
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Fib(n):

dp = [0]*n # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

f1 = 0

f2 = 1

for i=2,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Each computation needs only the last
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)

DP Example: (1) Fibonacci
• So, which one is better?

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Top-down (recursive with memoization) Bottom-up (iterative) (a.k.a tabulation)

- Starts with the root of the recursion tree
- Implemented as recursive function
- [Memoization:] The result (returned values)

of each recursive call will be stored in a data
structure, such as array or hashmap
(dictionary in Python)

- Main advantage:
- Easier (more “intuitive”) to write, as we

don’t need to know the ordering of the
recursion calls and sub-problems

- Starts with base cases
- Implemented with iteration (loop)

- Main advantage:
- Avoiding the recursion overhead

(recursive calls). So, in practice, to
program may run slightly faster.

- “Sometimes” it allows to use less
memory.

Demo: Fibonacci

DP Example: (2) Climbing Stairs
• Problem:
- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either

1 or 2 steps.
- In how many distinct ways we

can reach to the top?

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

DP Example: (2) Climbing Stairs
• Problem:
- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either

1 or 2 steps.
- In how many distinct ways we

can reach to the top?

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

DP Solution:
- Let dp[i] = number of distinct ways to reach ith step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s):

- dp[0] = 0, (when we are on the ground, no stairs)
- dp[1] = 1, (only one way to reach step 1)
- dp[2] = 2 (we have two ways to reach step 2)

i = 1

i = 2

DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

dp[2] = 2

for i=3,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Similar to Fibonacci we can re-write the
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)

DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization) Bottom-up (iterative)

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

StairClimbing(n):

dp = [0]*(n+1) # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

if n < 3: return n

f1 = 1

f2 = 2

for i=3,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Similar to Fibonacci we can re-write the
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and
a table of prices pi for i=1, …, n,
determine the maximum revenue
rn obtainable by cutting up the rod
and selling the pieces.
Note that if the price pn for a rod
of length n is large enough, an
optimal solution may require no
cutting at all.

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example:
Consider n=4

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

DP Example: (3) Rod-cutting
• Problem:

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine the maximum
revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution may require no
cutting at all.

• Example:
Consider n=4
How many ways to cut up a rod of length n?

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

- At each integer distance i inches from the left
end, we have an independent option of “cutting”
or “not cutting”, for i =1,…, n-1: 2n-1

- Find an optimal decomposition 𝑛 = 𝑖" + 𝑖# +⋯+ 𝑖$, for some 1 ≤ 𝑘 ≤ 𝑛 such that
the revenue 𝑟! = 𝑝%& + 𝑝%' +⋯+ 𝑝%(is maximized.

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

𝑛 = 0 ⟹ 𝑟& = 0

𝑛 = 1 ⟹ 𝑟! = ⏞𝑝!
'()*+

𝑛 = 2 ⟹ 𝑟" = max ⏞𝑝"
'()*+

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟!
/01 2343'*3 52(/ '6!

𝑛 = 3 ⟹ 𝑟7 = max ⏞𝑝7
'()*+

, ⏞𝑝"
)*+ @ -."

+ ⏞𝑟!
/01 2343'*3 52(/ '6"

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟"
/01 2343'*3 52(/ '6!

𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max 𝑝$ + 𝑟& , 𝑝$6! + 𝑟! , 𝑝$6" + 𝑟" , … , 𝑝! + 𝑟$6! = max

!9%9$
𝑝% + 𝑟$6%

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Example:
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max

!9%9$
𝑝% + 𝑟$6% Recurrence relation ⟹ Recursive algorithm

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6%

• Base case: 𝑟& = 0
• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
Running time?

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the subtree of 𝑟$ in the recursion tree

DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1 = # of leaves
• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#, for

some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! + 𝑝%" +⋯+
𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the recursion tree
• 𝑇 𝑛 = 1 + 1 + 2 + 4 + 8 + …
𝑇 𝑛 =1 + ∑%.&$6!𝑇 𝑖 =1 + 𝟐

𝒏6𝟏
𝟐6𝟏

= 𝟐𝒏

• 𝑇 𝑛 ∈ Θ 2$ Exponential (the same subproblems solved repeatedly)

DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down
(recursive with
memoization)

Bottom-up
(iterative)

Dynamic Programming (DP)
• Dynamic Programming vs. Divide-and-Conquer

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that

solution rather than resolving it later (memoization)

Note:
The subproblems
do not overlap

Dynamic Programming (DP)
• Dynamic Programming Elements
• DP often applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• Problem possesses an “optimal substructure”
• Finding the optimal solution involves finding the optimal solution to

subproblems
• The subproblems are the same as the original problem, but are “smaller”

(e.g., involve smaller-sized input data) Similar to D&C
• Subproblems overlap Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Dynamic Programming (DP)
• Dynamic Programming Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be
constructed from optimal solutions to subproblems (This step is concluded by
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many
times but the total number of distinct subproblems is polynomial (Recall the
recursion tree for Fibonacci and Rod-cutting problems, where the total number of
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only
once and reuses the stored result all other times (This can be done by using either
top-down (recursive) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
• Slides by Elizabeth Cherry, Georgia Institute of Technology.

51CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

