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A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο 𝑎! , where 
𝑎 is the number of possible options to choose at each step which is equal to the number 
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach
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Dynamic Programming (DP)

• Nothing to do with computer “programming”; a term defined by 

Richard Bellman back in the 1950’s

• “Dynamic” captures the time-varying aspect of the solution approach

• “Programming” because “it sounded impressive”; real interest was in defining 

schedules and plans (same sense as linear programming)

• Not a particular algorithm, but rather an algorithmic paradigm for 

developing algorithms.
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Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer
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Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Note: The 
subproblems do 
not overlap

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)



Dynamic Programming (DP)
• Dynamic Programming  vs.               Divide-and-Conquer
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DP Example: (1) Fibonacci
The Nth Fibonacci number FN is defined as:
• F0 = 0
• F1 = 1
• for N > 1, FN = FN-1 + FN-2
Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …
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Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

- Recursive relation
- Recursion tree
- Let’s calculate Fib(6)



DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2
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Time complexity? Exponential!



DP Example: (1) Fibonacci
• F0 = 0, F1 = 1, for N > 1, FN = FN-1 + FN-2

• Time complexity: (CLRS 4-4)
• Recurrence: T(n) =T(n−1) + T(n−2) + 𝑂(1)

• T(n) ∈ O( !" #
$

%
) ∈ O(2%)

• Φ = !" #
$ ≈ 1.618 is the “golden ration” 

CS-3510: Design and Analysis of Algorithms   |   Summer 2022 15

Fib(n):

if n==0: return 0

if n==1: return 1

return fib(n-1) + fib(n-2)

Fib (5)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Time complexity? Exponential!

Time: O(2n), Space: O(1)

https://en.wikipedia.org/wiki/Golden_ratio


DP Example: (1) Fibonacci
• Using dynamic programming paradigm:
• Save computed value of Fib(i) in dp[i]
• If Fib(i) has already been computed, use dp[i] rather than recomputing it
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n) Time complexity? 

Time-memory trade-off



DP Example: (1) Fibonacci
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Fib (6)

Fib (5) Fib (4)

Fib (4) Fib (3)

Fib (3) Fib (2)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (3)

Fib (2) Fib (1)

Fib (1) Fib (0)

Fib (2)

Fib (1) Fib (0)Each
 will b

e ca
lculate

d only once

Retrun
dp[1]

Retrun
dp[2]

Retrun
dp[3]

Retrun
dp[4]

Time complexity?  O(n) 



Dynamic Programming
• Top-down vs. Bottom-up Approach

• The development approach just described is called “top-down” 
dynamic programming
• Begin with problem description
• Recursively subdivide problem into subproblems
• i.e., begin at root of tree and work downwards

• Another approach is “bottom-up” dynamic programming
• Start at the leaf nodes of tree; solution is simple
• Build up solution to larger problem from solutions of the simpler 

subproblems
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Recursive
with 
memoization

Iterative



DP Example: (1) Fibonacci
• Top-down (recursive with memoization)         Bottom-up (iterative)
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n    # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Do we need to store all values?

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (1) Fibonacci
• Top-down (recursive with memoization)         Bottom-up (iterative)
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

dp = [0]*n    # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

for i=2,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Each computation needs only the last 
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (1) Fibonacci
• Top-down (recursive with memoization)         Bottom-up (iterative)
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Fib(n):

dp = [0]*n    # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

Fib(n):

f1 = 0

f2 = 1

for i=2,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Each computation needs only the last 
two Fibonacci numbers!
Re-write the code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)



DP Example: (1) Fibonacci
• So, which one is better?
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Top-down (recursive with memoization) Bottom-up (iterative) (a.k.a tabulation)

- Starts with the root of the recursion tree
- Implemented as recursive function
- [Memoization:] The result (returned values) 

of each recursive call will be stored in a data 
structure, such as array or hashmap
(dictionary in Python)

- Main advantage:
- Easier (more “intuitive”) to write, as we 

don’t need to know the ordering of the 
recursion calls and sub-problems

- Starts with base cases
- Implemented with iteration (loop)

- Main advantage:
- Avoiding the recursion overhead 

(recursive calls). So, in practice, to 
program may run slightly faster.

- “Sometimes” it allows to use less 
memory.

Demo: Fibonacci



DP Example: (2) Climbing Stairs
• Problem: 
- We want to climb a staircase
- The staircase has n steps.
- Each time we can take either

1 or 2 steps.
- In how many distinct ways we 

can reach to the top? 
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DP Solution:
- Let dp[i] = number of distinct ways to reach ith step.
- Recurrence relation: dp[i] = dp[i-1] + dp[i-2]
- Base case(s): 

- dp[0] = 0,   (when we are on the ground, no stairs)
- dp[1] = 1,   (only one way to reach step 1)
- dp[2] = 2   (we have two ways to reach step 2)

i = 1

i = 2



DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization)         Bottom-up (iterative)
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StairClimbing(n):

dp = [0]*(n+1)   # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

dp = [0]*(n+1)  # initialize dp[i]=0

dp[0] = 0

dp[1] = 1

dp[2] = 2

for i=3,…,n:

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

Similar to Fibonacci we can re-write the 
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(n)



DP Example: (2) Climbing Stairs
• Top-down (recursive with memoization)         Bottom-up (iterative)
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StairClimbing(n):

dp = [0]*(n+1)   # initialize dp[i]=0

recur(i):

if n==0: return 0

if n==1: return 1

if n==2: return 2

if dp[i]==0:

dp[i] = recur(i-1) + recur(i-2)

return dp[i]

return recur(n)

StairClimbing(n):

if n < 3: return n

f1 = 1

f2 = 2

for i=3,…,n:

f = f1 + f2

f1 = f2; f2 = f

return f

Similar to Fibonacci we can re-write the 
code with two scalars.

Time: O(n), Space: O(n) Time: O(n), Space: O(1)



DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and
a table of prices pi for i=1, …, n,
determine the maximum revenue
rn obtainable by cutting up the rod
and selling the pieces.
Note that if the price pn for a rod
of length n is large enough, an
optimal solution may require no
cutting at all.
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DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine
the maximum revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.

• Example: 
Consider n=4
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DP Example: (3) Rod-cutting
• Problem: 

Given a rod of length n inches and a table of prices pi for i=1, …, n, determine the maximum
revenue rn obtainable by cutting up the rod and selling the pieces.
Note that if the price pn for a rod of length n is large enough, an optimal solution may require no
cutting at all.

• Example: 
Consider n=4
How many ways to cut up a rod of length n?
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- At each integer distance i inches from the left 
end, we have an independent option of “cutting” 
or “not cutting”, for i =1,…, n-1: 2n-1

- Find an optimal decomposition  𝑛 = 𝑖" + 𝑖# +⋯+ 𝑖$, for some 1 ≤ 𝑘 ≤ 𝑛 such that 
the revenue 𝑟! = 𝑝%& + 𝑝%' +⋯+ 𝑝%( is maximized.



DP Example: (3) Rod-cutting
• Example: 
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0

𝑛 = 1 ⟹ 𝑟! = ⏞𝑝!
'( )*+

𝑛 = 2 ⟹ 𝑟" = max ⏞𝑝"
'( )*+

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟!
/01 2343'*3 52(/ '6!

𝑛 = 3 ⟹ 𝑟7 = max ⏞𝑝7
'( )*+

, ⏞𝑝"
)*+ @ -."

+ ⏞𝑟!
/01 2343'*3 52(/ '6"

, ⏞𝑝!
)*+ @ -.!

+ ⏞𝑟"
/01 2343'*3 52(/ '6!

𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
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…
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• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝!
𝑛 = 2 ⟹ 𝑟" = max 𝑝" , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&



DP Example: (3) Rod-cutting
• Example: 
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max 𝑝$ + 𝑟& , 𝑝$6! + 𝑟! , 𝑝$6" + 𝑟" , … , 𝑝! + 𝑟$6! = max

!9%9$
𝑝% + 𝑟$6%

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&



DP Example: (3) Rod-cutting
• Example: 
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.
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𝑛 = 0 ⟹ 𝑟& = 0
𝑛 = 1 ⟹ 𝑟! = 𝑝! + 𝑟&
𝑛 = 2 ⟹ 𝑟" = max 𝑝" + 𝑟& , 𝑝! + 𝑟!
𝑛 = 3 ⟹ 𝑟7 = max 𝑝7 + 𝑟& , 𝑝" + 𝑟! , 𝑝! + 𝑟"
𝑛 = 4 ⟹ 𝑟8 = max 𝑝8 + 𝑟& , 𝑝7 + 𝑟! , 𝑝" + 𝑟" , 𝑝! + 𝑟7
…
𝑛 ⟹ 𝑟$ = max

!9%9$
𝑝% + 𝑟$6% Recurrence relation ⟹ Recursive algorithm

𝑟8

𝑟7

𝑟"

𝑟!

𝑟&



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6%

• Base case: 𝑟& = 0
• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&
Running time?



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1

• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#,
for some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! +
𝑝%" +⋯+ 𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the subtree of 𝑟$ in the recursion tree 



DP Example: (3) Rod-cutting
• Rod of length n
• How many ways to cut up a rod of length n? 2n-1 = # of leaves
• Find an optimal decomposition 𝑛 = 𝑖! + 𝑖" +⋯+ 𝑖#, for

some 1 ≤ 𝑘 ≤ 𝑛 such that the revenue 𝑟$ = 𝑝%! + 𝑝%" +⋯+
𝑝%# is the maximum revenue.

• Recurrence relation: 𝑟$ = max
!9%9$

𝑝% + 𝑟$6% , 𝑟& = 0

• Recursive (brute force) algorithm
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Running time?
• 𝑇 𝑛 = number of [recursive] calls to Cut-Rod function
• 𝑇 𝑛 = number nodes in the recursion tree
• 𝑇 𝑛 = 1 + 1 + 2 + 4 + 8 + … 
𝑇 𝑛 =1 + ∑%.&$6!𝑇 𝑖 =1 + 𝟐

𝒏6𝟏
𝟐6𝟏

= 𝟐𝒏

• 𝑇 𝑛 ∈ Θ 2$ Exponential (the same subproblems solved repeatedly) 



DP Example: (3) Rod-cutting
• DP solution
• Recurrence relation: 𝑟$ = 𝑚𝑎𝑥

!9%9$
𝑝% + 𝑟$6% ,

• Base case: 𝑟& = 0
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𝑟8

𝑟7

𝑟"

𝑟!

𝑟&

Top-down 
(recursive with 
memoization)

Bottom-up 
(iterative)



Dynamic Programming (DP)
• Dynamic Programming  vs. Divide-and-Conquer
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Divide-and-Conquer:
• Divide problem into subproblems
• Recursively solve the subproblems and aggregate solutions

Dynamic Programming
• Divide problem into subproblems, recursively solve them
• Subproblems overlap
• When a subproblem has been solved, remember its solution and reuse that 

solution rather than resolving it later (memoization)

Note: 
The subproblems 
do not overlap



Dynamic Programming (DP)
• Dynamic Programming  Elements
• DP often applicable to optimization problems
• Large number of possible solutions
• Must find the “best” one (maximum or minimum)

• Problem possesses an “optimal substructure”
• Finding the optimal solution involves finding the optimal solution to 

subproblems
• The subproblems are the same as the original problem, but are “smaller” 

(e.g., involve smaller-sized input data) Similar to D&C
• Subproblems overlap Key difference to D&C
• Different subproblems operate on the same input data
• Allows exploitation of memoization
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Dynamic Programming (DP)
• Dynamic Programming  Recipe

1. Show the problem has optimal substructure, i.e., the optimal solution can be 
constructed from optimal solutions to subproblems (This step is concluded by
writing the recurrence relation and its base case).

2. Show subproblems are overlapping, i.e., subproblems may be encountered many 
times but the total number of distinct subproblems is polynomial (Recall the 
recursion tree for Fibonacci and Rod-cutting problems, where the total number of 
distinct subproblems was linear, i.e., O(n)).

3. Construct an algorithm that computes the optimal solution to each subproblem only 
once and reuses the stored result all other times (This can be done by using either 
top-down (recursive) or bottom-up (iterative) approach).

4. Analysis: show that time and space complexity is polynomial.
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