CS-3510:
 Design and Analysis of Algorithms

Divide-and-Conquer II

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

Master Theorem

- Goal. Recipe for solving common divide-and-conquer recurrences,

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

where $T(0)=0$ and $T(1)=\Theta(1)$.

- $a \geq 1$ is the number of subproblems, also known as "branching factor"
- $b \geq 2$ is the factor by which the subproblem size decreases.
- $f(n) \geq 0$ is the work to divide and combine subproblems.
- $f(n)$ usually takes polynomial time, i.e., $f(n)$ is $\Theta\left(n^{d}\right)$, where $d \geq 0$

Note:

$$
T(n)
$$

- $a^{i}=$ number of subproblems at level i
- $k=\log _{b} n$ levels, i.e., the depth of the recursion tree
- $\frac{n}{b^{i}}=$ size of subproblem at level i

$$
T(n / b)
$$

Master Theorem

- Goal. Recipe for solving common divide-and-conquer recurrences,

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

where $T(0)=0$ and $T(1)=\Theta(1)$.

- Three cases can happen...

$$
\Theta(1) \quad \text {. } 10 \quad \Theta(1) \Theta(1) \Theta(1) \ldots \text {...in } \quad \Theta\left(n^{\log _{b} a}\right)
$$

Master Theorem

- Three cases can happen...
- But before talking about that, let's have a quick review about "Geometric Series"
- Geometric series: sum of finite or infinite number of terms that have a constant ratio between each two consecutive terms.
- Can be written as $a+a r+a r^{2}+a r^{3}+\cdots$, where a is the coefficient of each term and r is the common ratio between adjacent terms.
- It can be shown that:

$$
\begin{aligned}
& \text { If } r \neq 1,1+r+r^{2}+r^{3}+\cdots+r^{k-1}=\frac{1-r^{k}}{1-r} \\
& \text { If } r=1,1+r+r^{2}+r^{3}+\cdots+r^{k-1}=k \\
& \text { If } r<1,1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}
\end{aligned}
$$

Master Theorem

- Case 1: Total computational cost is dominated by cost of leaves.
- Example:

Let $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$ with $\mathrm{T}(1)=1$:
Then, $\mathrm{T}(\mathrm{n})=\Theta\left(n^{\log _{2} 3}\right)$

$$
r=3 / 2>1 \quad T(n)=\left(1+r+r^{2}+r^{3}+\ldots+r^{\log _{2} n}\right) n=\frac{r^{1+\log _{2} n}-1}{r-1} n=3 n^{\log _{2} 3}-2 n
$$

Master Theorem

- Case 2: Total computational cost is evenly distributed among levels
- Example:

Let $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$ with $\mathrm{T}(1)=1$:
Then, $T(n)=\Theta(n \log n)$

Master Theorem

- Case 3: Total computational cost is dominated by cost of root
- Example:

Let $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 4)+\mathrm{n}^{5}$ with $\mathrm{T}(1)=1$:
Then, $T(n)=\Theta\left(n^{5}\right)$

$$
r=3 / 4^{5}<1 \quad n^{5} \leq T(n) \leq\left(1+r+r^{2}+r^{3}+\ldots\right) n^{5} \leq \frac{1}{1-r} n^{5}
$$

Master Theorem

- Goal. Recipe for solving common divide-and-conquer recurrences,

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

where $T(0)=0$ and $T(1)=\Theta(1)$.

- $a \geq 1$ is the number of subproblems, also known as "branching factor"
- $b \geq 2$ is the factor by which the subproblem size decreases.
- $f(n) \geq 0$ is the work to divide and combine subproblems.
- If $f(n)$ is $\Theta\left(n^{d}\right)$, where $d \geq 0$:

$$
T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d}(\text { case } 1) \\ \Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} \quad(\text { case } 2) \\ \Theta\left(n^{d}\right), & \text { if } a<b^{d} \quad(\text { case } 3)\end{cases}
$$

Master Theorem

- Goal. Recipe for solving common divide-and-conquer recurrences,

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

$$
T(n)=\left\{\begin{array}{lll}
\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} & (\text { case 1) } \\
\Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} & (\text { case 2) } \\
\Theta\left(n^{d}\right), & \text { if } a<b^{d} & \text { (case 3) }
\end{array}\right.
$$

- Limitation. Master theorem cannot be used if
- $T(n)$ is not monotone, e.g., $T(n)=\sin (n)$
- $f(n)$ is not polynomial, e.g., $T(n)=2 T\left(\frac{n}{2}\right)+2^{n}$
- b cannot be expressed as a constant, e.g., $T(n)=a T(\sqrt{n})+f(n)$

Master Theorem

$T(n) \in\left\{\begin{array}{lll}\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} & \text { (case 1) } \\ \Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} & \text { (case 2) } \\ \Theta\left(n^{d}\right), & \text { if } a<b^{d} & \text { (case 3) }\end{array}\right.$

- Now, we can apply master theorem to binary-search and merge-sort:
- Binary search:
- Recurrence: $\mathrm{T}(\mathrm{n})=\mathrm{T}\left(\frac{n}{2}\right)+1$
- Therefore, $a=1, \mathrm{~b}=2$, and $f(n)=1=\Theta\left(n^{0}\right)$, i.e., $d=0$
- $a=b^{d} \Rightarrow \mathrm{~T}(\mathrm{n}) \in \Theta\left(n^{0} \log n\right)=\Theta(\log n)$

- Merge sort:
- Recurrence: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}\left(\frac{n}{2}\right)+n$
- Therefore, $a=2, \mathrm{~b}=2$, and $f(n)=n=\Theta\left(n^{1}\right)$, i.e., $d=1$
- $a=b^{d} \Rightarrow \mathrm{~T}(\mathrm{n}) \in \Theta\left(n^{1} \log n\right)=\Theta(n \log n)$

Master Theorem

- More examples:
- Let $\mathrm{T}(\mathrm{n})=\mathrm{T}\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$
- $a=1, b=2, d=2$
- $a<b^{d}$ (case 3)

$$
T(n) \in\left\{\begin{array}{lll}
\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} & (\text { case 1) } \\
\Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} & (\text { case }) \\
\Theta\left(n^{d}\right), & \text { if } a<b^{d} & (\text { case 3) }
\end{array}\right.
$$

- $T(n) \in \Theta\left(n^{2}\right)$

Master Theorem

- More examples:
- Let $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}\left(\frac{n}{4}\right)+\sqrt{n}+8$
- $a=2, b=4, d=\frac{1}{2}$
- $a=b^{d}$ (case 2)

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

$$
T(n) \in\left\{\begin{array}{lll}
\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} & (\text { case 1) } \\
\Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} & (\text { case 2) } \\
\Theta\left(n^{d}\right), & \text { if } a<b^{d} & (\text { case })
\end{array}\right.
$$

- $T(n) \in \Theta\left(n^{d} \log n\right)=\Theta(\sqrt{n} \log n)$

Master Theorem

- More examples:
- Let $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}\left(\frac{n}{2}\right)+\frac{3}{4} n+1$
- $a=3, b=2, d=1$
- $a>b^{d}$ (case 1)

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

- $T(n) \in \Theta\left(n^{\log _{2} 3}\right)$

$$
T(n) \in\left\{\begin{array}{lll}
\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} & (\text { case 1) } \\
\Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} & \text { (case 2) } \\
\Theta\left(n^{d}\right), & \text { if } a<b^{d} & (\text { case 3) }
\end{array}\right.
$$

D\&C Example: Quick-sort

- Sorting Problem: Given an input of n elements, re-arrange the elements in ascending (or descending) order.

Array Sorting Algorithms

- Algorithms:

Quick-sort (cles 7.1)

- Similar to merge-sort applies divide-and-conquer paradigm.
- Merge-sort:
- Divide: Divide the array into two halves
- Conquer: Sort each half (by recursively executing merge-sort on each half)
- Combine: Merge two halves to make a sorted array.
- Quick-sort:
- Divide: Partition (rearrange) the array into three parts: $\overbrace{A[1: p-1]}^{A_{\text {eft }}}, \overbrace{A[p]}^{a_{p}}, \overbrace{A[p+1: n]}^{A_{\text {right }}}$, such that all elements of $A_{\text {left }}<A[p]$ and all elements of $A_{\text {right }} \geq A[p]$. Also, $a_{p}=A[p]$ is known as the pivot element. Return index p.
- Conquer: Sort the two sub-arrays $A_{\text {left }}$ and $A_{\text {right }}$ by recursive calls to quick-sort on each half.
- Combine: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

Quick-sort (clis 7.1)

- Similar to merge-sort applies divide-and-conquer paradigm.
- Merge-sort:
- Divide: Divide the array into two halves
- Conquer: Sort each half (by recursively executing merge-sort on each half)
- Combine: Merge two halves to make a sorted array.

Key part of
merge-sort

- Quick-sort:

Key part of
quick-sort

- Divide: Partition (rearrange) the array into three parts: $\overbrace{A[1: p-1]}, \overbrace{A[p]}^{p}, \overbrace{A[p+1: n]}$, such that all elements of $A_{\text {left }}<A[p]$ and all elements of $A_{\text {right }} \geq A[p]$. Also, $a_{p}=A[p]$ is known as the pivot element. Return index p.
- Conquer: Sort the two sub-arrays $A_{\text {left }}$ and $A_{\text {right }}$ by recursive calls to quick-sort on each half.
- Combine: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

Quick-sort (clrs 7.1)

- Quick-sort:

- Divide: Partition (rearrange) the array into three parts: $\overbrace{A[1: p-1]}^{A_{\text {left }}}, \overbrace{A[p]}^{a_{p}}, \overbrace{A[p+1: n]}^{A_{\text {right }}}$, such that all elements of $A_{\text {left }}<A[p]$ and all elements of $A_{\text {right }} \geq A[p]$. Also, $a_{p}=A[p]$ is known as the pivot element. Return index p.
- Conquer: Sort the two sub-arrays $A_{\text {left }}$ and $A_{\text {right }}$ by recursive calls to quick-sort on each half.
- Combine: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

```
Quicksort(A, lo, hi):
    if lo < hi:
    p = partition(A, lo, hi)
    Quicksort(A, lo, p-1)
    Quicksort(A, p+1, r)
```


Quick-sort (clrs 7.1)

- Quick-sort:

- Divide: Partition (rearrange) the array into three parts: $\overbrace{A[1: p-1]}^{A_{\text {left }}}, \overbrace{A[p]}^{a_{p}}, \overbrace{A[p+1: n]}^{A_{\text {right }}}$, such that all elements of $A_{\text {left }}<A[p]$ and all elements of $A_{\text {right }} \geq A[p]$. Also, $a_{p}=A[p]$ is known as the pivot element. Return index p.
- Conquer: Sort the two sub-arrays $A_{\text {left }}$ and $A_{\text {right }}$ by recursive calls to quick-sort on each half.
- Combine: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted
- Key component: Partition
- Returns the final index of the pivot
- Maintains two subarrays which grow

```
Quicksort(A, lo, hi):
    if lo < hi:
    p = partition(A, lo, hi)
    Quicksort(A, lo, p-1)
    Quicksort(A, p+1, r)
```


Quick-sort (clrs 7.1)

```
Quicksort(A, lo, hi):
    if lo < hi:
    p = partition(A, lo, hi)
    Quicksort(A, lo, p-1)
    Quicksort(A, p+1, r)
```

- Key component: Partition
- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot

```
Partition(A, lo, hi):
```

```
choose a pivot element p E [lo, hi]
```

 exchange \(A[p]\) with \(A[h i]\)
 pivot_index \(\leftarrow\) lo
 for each i = lo : hi-1
 if \(A[i]<A[h i]:\)
 exchange A[i] with A[pivot_index]
 pivot_index ++
 exchange A[hi] with A[pivot_index]
 return pivot_index element in the final sorted array

Quick-sort (clrs 7.1)

- Key component: Partition
- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot element in the final sorted array
- Ex. lo hi
- Let $A=[\ldots, 30,50,15,5,25,8,6,20, \ldots]$
- $\mathrm{P}=\operatorname{Partition}(\mathrm{A}$, lo, hi)

Partition(A, lo, hi):
choose a pivot element $p \in[l o, h i]$
exchange A[p] with A[hi]
// we can always choose $p=$ hi.
// In that case no exchange is required
pivot_index \leftarrow lo
for each i = lo : hi-1 if $A[i]<A[h i]:$
exchange $A[i]$ with $A\left[p i v o t _i n d e x\right]$ pivot_index ++
exchange A[hi] with A[pivot_index]
return pivot_index

Quick-sort (CLRs 7.1)

- Key component: Partition
- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot element in the final sorted array
- Ex.
lo
hi
- Let $A=[\ldots, 30,50,15,5,25,8,6,20, \ldots]$
- $\mathrm{P}=\operatorname{Partition}(\mathrm{A}$, lo, hi)


```
Partition(A, lo, hi):
```

 choose a pivot element \(p \in[l o, h i]\)
 exchange \(A[p]\) with \(A[h i]\)
 // we can always choose p = hi.
 // In that case no exchange is required
 pivot_index \(\leftarrow\) lo
 for each i = lo : hi-1
 if \(A[i]<A[h i]:\)
 exchange \(A[i]\) with \(A\left[p i v o t _i n d e x\right]\)
 pivot_index ++
 exchange A[hi] with A[pivot_index]
 return pivot_index

Quick-sort (clis 7.1)

Partition(A, lo, hi):
choose a pivot element $p \in[l o, h i]$
exchange $A[p]$ with $A[h i]$
// we can always choose $p=h i$.
// In that case no exchange is required pivot_index \leftarrow lo
for each $i=10: h i-1$ if $A[i]<A[h i]:$
exchange $A[i]$ with $A\left[p i v o t _i n d e x\right]$ pivot_index ++
exchange A[hi] with A[pivot_index]
return pivot_index

Quick-sort (cles 7.1)

Partition(A, lo, hi):
choose a pivot element $p \in[10$, hi]
exchange $A[p]$ with $A[h i]$
// we can always choose p = hi.
// In that case no exchange is required pivot_index \leftarrow lo
for each i = lo : hi-1 if $A[i]<A[h i]:$
exchange A[i] with A[pivot_index] pivot_index ++
exchange A[hi] with A[pivot_index]
return pivot_index

Quick-sort (clis 7.1)


```
Partition(A, lo, hi)
```

Partition(A, lo, hi)
choose a pivot element p \in [lo, hi]
choose a pivot element p \in [lo, hi]
exchange A[p] with A[hi]
exchange A[p] with A[hi]
// we can always choose p = hi.
// we can always choose p = hi.
// In that case no exchange is required
// In that case no exchange is required
pivot_index \leftarrow lo
pivot_index \leftarrow lo
for each i = lo : hi-1
for each i = lo : hi-1
if A[i] < A[hi]:
if A[i] < A[hi]:
exchange A[i] with A[pivot_index]
exchange A[i] with A[pivot_index]
pivot_index ++
pivot_index ++
exchange A[hi] with A[pivot_index]
exchange A[hi] with A[pivot_index]
return pivot_index

```
    return pivot_index
```

Return index $=4$
(Note $\mathrm{A}[4]=20$ is in its right place in the final sorted array)

Quick-sort (clrs 7.1)

- Let $\mathrm{A}=[\ldots, 30,50,15,5,25,8,6,20, \ldots]$
- $\mathrm{P}=\operatorname{Partition}(\mathrm{A}, \mathrm{lo}, \mathrm{hi})$

Quick-sort (clrs 7.1)

- Important Notes:

- Let $x=$ pivot $=A[p]$. Then, at each step of the for loop, we have four regions:

1) $\mathrm{A}[1$: index-1] all elements $<\mathrm{x}$
2) $A[$ index: i $]$ all elements $\geq x$
3) $\mathrm{A}[\mathrm{i}+1$: hi-1] not specified yet!
4) $\mathrm{A}[\mathrm{hi}]=\mathrm{x}$ (the pivot element)

- After calling $\mathrm{p}=\operatorname{Partition}(\mathrm{A}, \mathrm{lo}, \mathrm{hi})$, all elements before pivot $=\mathrm{A}[\mathrm{p}]$ are less than $(<)$ pivot and all elements after pivot are not less than (\geq) pivot

```
Partition(A, lo, hi):
    choose a pivot element p \in [lo, hi]
    exchange A[p] with A[hi]
    // we can always choose p = hi.
    // In that case no exchange is required
    pivot_index \leftarrow lo
    for each i = lo : hi-1
        if A[i] < A[hi]:
            exchange A[i] with A[pivot_index]
            pivot index ++
    exchange A[hi] with A[pivot_index]
    return pivot_index
```


Quick-sort (clrs 7.1)

Quicksort(A, lo, hi):
if lo < hi:
$\mathrm{p}=\operatorname{partition(A,~lo,hi)}$
Quicksort(A, lo, p-1)
Quicksort(A, p+1, r)

- Demo

```
Partition(A, lo, hi):
```

```
choose a pivot element p E [lo, hi]
exchange A[p] with A[hi]
pivot_index \leftarrow lo
for each i = lo : hi-1
        if A[i] < A[hi]:
        exchange A[i] with A[pivot_index]
        pivot_index ++
    exchange A[hi] with A[pivot_index]
    return pivot_index
```


Quick-sort (cles 7.1)

- Running time?
- It depends!
- Whether the partitioning is balanced or unbalanced.
- Therefore, it depends on which elements are used for partitioning.
- If the partitioning is balanced
- Asymptotically as fast as merge-sort $\Theta(n \log n)$
- If the partitioning is unbalanced
- Asymptotically as slow as insertion-sort $\Theta\left(n^{2}\right)$

Quick-sort (clrs 7.1)

- Running time? (not a formal proof)

- Worst-case: when the partitioning is unbalanced
- The partition routine produces one subproblem with $n-1$ elements and one with 0 element. In the worst case, this will happen in each recursive call.
- This can happen when the input array is sorted. (maximally unbalanced)
- $T(n)=T(n-1)+T(0)+\Theta(n)=T(n-1)+\Theta(n) \in \Theta\left(n^{2}\right)$

Partitioning

- Asymptotically as slow as insertion-sort $\Theta\left(n^{2}\right)$

Quick-sort (cles 7.1)

- Running time? (not a formal proof)

- Best-case: most even possible split
- The partition routine produces two subproblems, each of size no more than $n / 2$

$$
T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n) \in \Theta(n \log n)
$$

- Average-case
- Much closer to the best case than to the worst case
- Ex. Assume the Partition subroutine always produces 9-to-1 proportional split

$$
T(n)=T\left(\frac{9 n}{10}\right)+T\left(\frac{n}{10}\right)+\Theta(n)
$$

$c n$
cn

$$
\mathrm{T}(\mathrm{n}) \in \Theta(n \log n)
$$

Quick-sort (clrs 7.1)

- Running time? (not a formal proof)

- In practice:
- For not-worst-case inputs, quick-sort usually outperforms merge-sort.
- Commonly used in sorting libraries.
- Strategies to avoid $\Theta\left(n^{2}\right)$
- Choosing the pivot element randomly
- Choosing the pivot as the median of three random elements
- Still, the worst case is possible, but highly unlikely

Partition(A, lo, hi):
choose a pivot element $p \in[10$, hi]
exchange $A[p]$ with $A[h i]$
pivot_index \leftarrow lo
for each i = lo : hi-1
if $A[i]<A[h i]:$
exchange A[i] with A[pivot_index] pivot_index ++
exchange A[hi] with A[pivot_index]
return pivot_index

Merge-sort vs. Quick-sort

- Merge-sort: (bottom-up: main action during the combining the subproblem solutions)
- Divide: Divide the array into two halves
- Conquer: Sort each half (by recursively executing merge-sort mergesort
- Combine: Merge two halves to make a sorted array
- Quick-sort: (top-down: main action during the breaking the problem into subproblems)
- Divide: Partition (rearrange) the array into three parts: $A_{\text {left }}, A[p], A_{\text {right }}$, such that all elements of $A_{\text {left }}<A[p]$ and all elements of $A_{\text {right }} \geq A[p]$. Also, $a_{p}=A[p]$ is known as the pivot element. Return index p. As we divide into subproblems, we find the right position of the pivot element.
- Conquer: Sort the two sub-arrays $A_{\text {left }}$ and $A_{\text {right }}$ by recursive calls to quick-sort on each half.
- Combine: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

Merge-sort vs. Quick-sort

- Sorting Problem: Given an input of n elements, re-arrange the elements in ascending (or descending) order.

Array Sorting Algorithms

D\&C Example: Matrix Multiplication

Matrix multiplication. Given two n-by- n matrices A and B, compute $C=A B$.
Grade-school. $\Theta\left(n^{3}\right)$ arithmetic operations.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

$$
\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \times\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
.59 & .32 & .41 \\
.31 & .36 & .25 \\
.45 & .31 & .42
\end{array}\right]=\left[\begin{array}{lll}
.70 & .20 & .10 \\
.30 & .60 & .10 \\
.50 & .10 & .40
\end{array}\right] \times\left[\begin{array}{lll}
.80 & .30 & .50 \\
.10 & .40 & .10 \\
.10 & .30 & .40
\end{array}\right]
$$

D\&C Example: Matrix Multiplication

$$
C_{11}=A_{11} \times B_{11}+A_{12} \times B_{21}=\left[\begin{array}{ll}
0 & 1 \\
4 & 5
\end{array}\right] \times\left[\begin{array}{ll}
16 & 17 \\
20 & 21
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
6 & 7
\end{array}\right] \times\left[\begin{array}{ll}
24 & 25 \\
28 & 29
\end{array}\right]=\left[\begin{array}{ll}
152 & 158 \\
504 & 526
\end{array}\right]
$$

D\&C Example: Matrix Multiplication

To multiply two n-by- n matrices A and B :

- Divide: partition A and B into $1 / 2 n$-by- $1 / 2 n$ blocks.
- Conquer: multiply 8 pairs of $1 / 2 n$-by $-1 / 2 n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

D\&C Example: Matrix Multiplication

To multiply two n-by- n matrices A and B :

- Divide: partition A and B into $1 / 2 n$-by- $1 / 2 n$ blocks.
- Conquer: multiply 8 pairs of $1 / 2 n$-by- $1 / 2 n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$
\begin{gathered}
\quad \begin{array}{c}
n \text {-by-n matrices } \\
C= \\
{\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \times\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]} \\
\\
\\
1 / 2 n-\text { by-1/2n matrices }
\end{array} \\
\end{gathered}
$$

8 matrix multiplications
(of $1 / 2 n-b y-1 / 2 n$ matrices)

$C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right)$

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

$T(n) \in \begin{cases}\Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} \\ \text { (case 1) } \\ \Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ (\text { case 2) } \\ \Theta\left(n^{d}\right), & \text { if } a<b^{d} \\ \text { (case 3) }\end{cases}$

Runtime?

Using master theorem:

$$
T(n)=\underbrace{8 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }}
$$

$\Rightarrow T(n)=\Theta\left(n^{3}\right)$

D\&C Example: Matrix Multiplication

- Fast matrix multiplication
- Strassen's trick

Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications (plus 11 additions and 7 subtractions).

Pf. $\quad C_{12}=P_{1}+P_{2}$

$$
=A_{11} \times\left(B_{12}-B_{22}\right)+\left(A_{11}+A_{12}\right) \times B_{22}
$$

$$
=A_{11} \times B_{12}+A_{12} \times B_{22}
$$

$$
\begin{aligned}
& P_{1} \leftarrow A_{11} \times\left(B_{12}-B_{22}\right) \\
& P_{2} \leftarrow\left(A_{11}+A_{12}\right) \times B_{22} \\
& P_{3} \leftarrow\left(A_{21}+A_{22}\right) \times B_{11} \\
& P_{4} \leftarrow A_{22} \times\left(B_{21}-B_{11}\right) \\
& P_{5} \leftarrow\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right) \\
& P_{6} \leftarrow\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right) \\
& P_{7} \leftarrow\left(A_{11}-A_{21}\right) \times\left(B_{11}+B_{12}\right) \\
& 7 \text { scalar multiplications }
\end{aligned}
$$

D\&C Example: Matrix Multiplication

- Fast matrix multiplication
- Strassen's trick
- To multiply n-by-n matrices:
- Divide: partition A and B into $1 / 2 n$-by- $1 / 2 n$ blocks.
- Compute:
$141 / 2 n$-by- $1 / 2 n$ matrices via 10 matrix additions.
- Conquer: multiply 7 pairs of $1 / 2 n$-by- $1 / 2 n$ matrices, recursively.
- Combine:

7 products into 4 terms using 8 matrix additions.

Key idea. Can multiply two 2 -by-2 matrices via 7 scalar multiplications (plus 11 additions and 7 subtractions).

$$
\begin{aligned}
& \left.\begin{array}{lll}
C_{11} & C_{12}
\end{array}\right]=\left[A_{12}\right. \\
& {\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \times\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \quad \begin{array}{l}
P_{1} \leftarrow A_{11} \times\left(B_{12}-B_{22}\right) \\
P_{2} \leftarrow\left(A_{11}+A_{12}\right) \times B_{22}
\end{array}} \\
& P_{3} \leftarrow\left(A_{21}+A_{22}\right) \times B_{11} \\
& C_{11}=P_{5}+P_{4}-P_{2}+P_{6} \\
& P_{4} \leftarrow A_{22} \times\left(B_{21}-B_{11}\right) \\
& P_{5} \leftarrow\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right) \\
& P_{6} \leftarrow\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right) \\
& P_{7} \leftarrow\left(A_{11}-A_{21}\right) \times\left(B_{11}+B_{12}\right) \\
& 7 \text { scalar multiplications } \\
& =A_{11} \times\left(B_{12}-B_{22}\right)+\left(A_{11}+A_{12}\right) \times B_{22} \\
& =A_{11} \times B_{12}+A_{12} \times B_{22} .
\end{aligned}
$$

D\&C Example: Matrix Multiplication

- Fast matrix multiplication
- Strassen's trick
- To multiply n-by-n matrices:
- Divide: partition A and B into $1 / 2 n$-by- $1 / 2 n$ blocks.
- Compute:
$141 / 2 n$-by- $1 / 2 n$ matrices via 10 matrix additions.
- Conquer:
multiply 7 pairs of $1 / 2 n$-by- $1 / 2 n$ matrices, recursively.
- Combine:

7 products into 4 terms using 8 matrix additions.

Runtime?
Using master theorem:
Assume n is power of 2 .

$$
T(n)=\underbrace{7 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, subbract }}
$$

$$
T(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

D\&C Example: Matrix Multiplication

- History of arithmetic complexity of matrix multiplication

year	algorithm	arithmetic operations	
1858	"grade school"	$O\left(n^{3}\right)$	
1969	Strassen	$O\left(n^{2.808)}\right.$	
1978	Pan	$O\left(n^{2.796}\right)$	
1979	Bini	$O\left(n^{2.780}\right)$	
1981	Schönhage	$O\left(n^{2.522}\right)$	
1982	Romani	$O\left(n^{2.517}\right)$	galactic algorithms
1982	Coppersmith-Winograd	$O\left(n^{2.496}\right)$	
1986	Strassen	$O\left(n^{2.479}\right)$	
1989	Coppersmith-Winograd	$O\left(n^{2.3755}\right)$	
2010	Strother	$O\left(n^{2.3737}\right)$	
2011	Williams	$O\left(n^{2.372873}\right)$	
2014	Le Gall	$O\left({ }^{2.372864}\right)$	1
	? ? ?	$O\left(n^{2+\varepsilon}\right)$	

D\&C Example: Closest Pair of Points

- Problem: Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.
- Applications
- Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor

D\&C Example: Closest Pair of Points

- Problem: Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.
- Brute force.
- Check all pairs with $\Theta\left(n^{2}\right)$ distance calculations.
- 1D version.
- Easy $O(n \log n)$ algorithm if points are on a line.
- Non-degeneracy assumption.
- No two points have the same x-coordinate.

D\&C Example: Closest Pair of Points

- Sorting solution?
- Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

D\&C Example: Closest Pair of Points

- Sorting solution?
- Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

D\&C Example: Closest Pair of Points

- Divide-and-Conquer
- Divide: draw vertical line L so that $n / 2$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- (How? seems like $\Theta(n 2)$?!)
- Return best of 3 solutions.

D\&C Example: Closest Pair of Points

- Divide-and-Conquer
- Finding closest pair with one point in each side, assuming that distance $<\delta$.
- Observation: suffices to consider only those points within δ of line L.

D\&C Example: Closest Pair of Points

- Divide-and-Conquer
- Finding closest pair with one point in each side, assuming that distance $<\delta$.
- Observation: suffices to consider only those points within δ of line L.
- Sort points in 2δ-strip by their y-coordinate.
- Check distances of only those points within 7 positions in sorted list!

D\&C Example: Closest Pair of Points

- Divide-and-Conquer

- Finding closest pair with one point in each side, assuming that distance $<\delta$.
- Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.
- Claim: If $|j-i|>7$, then the distance between s_{i} and s_{j} is at least δ.
- Proof:
- Consider the 2δ-by- δ rectangle R in strip whose min y-coordinate is y-coordinate of s_{i}
- Distance between s_{i} and any point s_{j} above R is $\geq \delta$
- Subdivide R into 8 squares.
diameter is
$\delta / \sqrt{2}<\delta$
- At most 1 point per square.
- At most 7 other points can be in R.

D\&C Example: Closest Pair of Points

- Divide-and-Conquer

- Divide:
draw vertical line L so that $n / 2$ points on each side.
- Conquer:
find closest pair in each side recursively.
- Combine:
find closest pair with one point in each side.
- Return best of 3 solutions.
$\operatorname{Closest-Pair}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$Compute vertical line L such that half the points$O(n)$are on each side of the line.$\delta_{1} \leftarrow$ CLOSEST-PAIR(points in left half).$T(n / 2)$
$\delta_{2} \leftarrow$ CLOSEST-PAIR(points in right half). $T(n / 2)$
$\delta \leftarrow \min \left\{\delta_{1}, \delta_{2}\right\}$.Delete all points further than δ from line L.$O(n)$
Sort remaining points by y-coordinate. $O(n \log n)$Scan points in y-order and compare distance betweeneach point and next 7 neighbors. If any of thesedistances is less than δ, update δ.
RETURN δ.

D\&C Example: Closest Pair of Points

- Divide-and-Conquer

- Runtime?

$$
\begin{aligned}
& \mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
\end{aligned}
$$

Q. Can we achieve $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
A. Yes. Don't sort points in strip from scratch each time. Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate. Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

References

- The lecture slides are heavily based on the suggested textbooks and the corresponding published lecture notes:
- CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., \& Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- KT: Kleinberg, J., \& Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
- DPV: Dasgupta, S., Papadimitriou, C. H., \& Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
- Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

