
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Divide-and-Conquer II

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We a
re h

ere
!

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).
• a ≥ 1 is the number of subproblems, also known as “branching factor”
• b ≥ 2 is the factor by which the subproblem size decreases.
• f (n) ≥ 0 is the work to divide and combine subproblems.

• f (n) usually takes polynomial time, i.e., f (n) is Θ(𝑛!), where 𝑑 ≥ 0

Note:
• 𝑎! = number of subproblems at level i
• 𝑘 = log" 𝑛 levels, i.e., the depth of the recursion tree
• #
"!

= size of subproblem at level i

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).

• Three cases can happen…

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Master Theorem
• Three cases can happen…
• But before talking about that, let’s have a quick review about “Geometric Series”

• Geometric series: sum of finite or infinite number of terms that have a constant ratio between
each two consecutive terms.

• Can be written as 𝑎 + 𝑎𝑟 + 𝑎𝑟! + 𝑎𝑟" +⋯, where 𝑎 is the coefficient of each term and 𝑟 is
the common ratio between adjacent terms.

• It can be shown that:

o If 𝑟 ≠ 1, 1 + 𝑟 + 𝑟! + 𝑟" +⋯+ 𝑟#$% = %$&!

%$&

o If 𝑟 = 1, 1 + 𝑟 + 𝑟! + 𝑟" +⋯+ 𝑟#$% = 𝑘

o If 𝑟 < 1, 1 + 𝑟 + 𝑟! + 𝑟" +⋯ = %
%$&

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Master Theorem
• Case 1: Total computational cost is dominated by cost of leaves.
• Example:
Let T(n) = 3T(n/2)+n with T(1)=1:
Then, T(n)= Θ(𝑛'()" ")

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Master Theorem
• Case 2: Total computational cost is evenly distributed among levels
• Example:
Let T(n) = 2T(n/2)+n with T(1)=1:
Then, T(n)= Θ(𝑛 log𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Master Theorem
• Case 3: Total computational cost is dominated by cost of root
• Example:
Let T(n) = 3T(n/4)+n5 with T(1)=1:
Then, T(n)= Θ(𝑛*)

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).
• a ≥ 1 is the number of subproblems, also known as “branching factor”
• b ≥ 2 is the factor by which the subproblem size decreases.
• f (n) ≥ 0 is the work to divide and combine subproblems.
• If f (n) is Θ(𝑛!), where 𝑑 ≥ 0:

𝑇 𝑛 =
Θ 𝑛$%&" ' , if 𝑎 > 𝑏((case 1)
Θ 𝑛(log 𝑛 , if 𝑎 = 𝑏((case 2)
Θ 𝑛(, if 𝑎 < 𝑏((case 3)

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛$%&" ' , if 𝑎 > 𝑏((case 1)
Θ 𝑛(log 𝑛 , if 𝑎 = 𝑏((case 2)
Θ 𝑛(, if 𝑎 < 𝑏((case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇 #

)
+ 2#

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

Master Theorem
• Now, we can apply master theorem to binary-search and merge-sort:

• Binary search:
• Recurrence: T n = T +

!
+ 1

• Therefore, 𝑎 = 1, b = 2, and 𝑓 𝑛 = 1 = Θ 𝑛, , i.e., 𝑑 = 0
• 𝑎 = 𝑏- ⟹ T n ∈ Θ 𝑛, log 𝑛 = Θ log 𝑛

• Merge sort:
• Recurrence: T n = 2T +

!
+ 𝑛

• Therefore, 𝑎 = 2, b = 2, and 𝑓 𝑛 = 𝑛 = Θ 𝑛% , i.e., 𝑑 = 1
• 𝑎 = 𝑏- ⟹ T n ∈ Θ 𝑛% log 𝑛 = Θ 𝑛 log 𝑛

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#! $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

Master Theorem
• More examples:

• Let T n = T ;
<
+ =

<
𝑛< + 𝑛

• 𝑎 = 1, 𝑏 = 2, 𝑑 = 2
• 𝑎 < 𝑏> (case 3)

• 𝑇 𝑛 ∈ Θ 𝑛<

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#" $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

Master Theorem
• More examples:

• Let T n = 2T ;
?
+ 𝑛 + 8

• 𝑎 = 2, 𝑏 = 4, 𝑑 = =
<

• 𝑎 = 𝑏> (case 2)

• 𝑇 𝑛 ∈ Θ 𝑛> log 𝑛 = Θ 𝑛 log 𝑛

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#" $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

Master Theorem
• More examples:

• Let T n = 3T ;
<
+ @

?
𝑛 + 1

• 𝑎 = 3, 𝑏 = 2, 𝑑 = 1
• 𝑎 > 𝑏> (case 1)

• 𝑇 𝑛 ∈ Θ 𝑛ABC! @

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#" $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

D&C Example: Quick-sort
• Sorting Problem: Given an input of n elements, re-arrange the

elements in ascending (or descending) order.

• Algorithms:

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Running time

Ex. of Brute force: Θ 𝑛#

Ex. of D&C: Θ 𝑛 log 𝑛

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Quick-sort (CLRS 7.1)

• Similar to merge-sort applies divide-and-conquer paradigm.
• Merge-sort:

• Divide: Divide the array into two halves
• Conquer: Sort each half (by recursively executing merge-sort on each half)
• Combine: Merge two halves to make a sorted array.

• Quick-sort:

• Divide: Partition (rearrange) the array into three parts: 𝐴 1: 𝑝 − 1
.3456

,I𝐴 𝑝
/7

, 𝐴 𝑝 + 1: 𝑛
.89:;6

, such
that all elements of 𝐴'012 < 𝐴 𝑝 and all elements of 𝐴34)52 ≥ 𝐴 𝑝 . Also, 𝑎6 = 𝐴 𝑝 is known as
the pivot element. Return index 𝑝.

• Conquer: Sort the two sub-arrays 𝐴'012 and 𝐴34)52 by recursive calls to quick-sort on each half.
• Combine: Because the subarrays are already sorted, no additional work is required for

combining the results. The entire array is now sorted

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Quick-sort (CLRS 7.1)

• Similar to merge-sort applies divide-and-conquer paradigm.
• Merge-sort:

• Divide: Divide the array into two halves
• Conquer: Sort each half (by recursively executing merge-sort on each half)
• Combine: Merge two halves to make a sorted array.

• Quick-sort:

• Divide: Partition (rearrange) the array into three parts: 𝐴 1: 𝑝 − 1
.<=>?

,I𝐴 𝑝
/7

, 𝐴 𝑝 + 1: 𝑛
.@ABC?

, such
that all elements of 𝐴789: < 𝐴 𝑝 and all elements of 𝐴&;<=: ≥ 𝐴 𝑝 . Also, 𝑎6 = 𝐴 𝑝 is known
as the pivot element. Return index 𝑝.

• Conquer: Sort the two sub-arrays 𝐴789: and 𝐴&;<=: by recursive calls to quick-sort on each half.
• Combine: Because the subarrays are already sorted, no additional work is required for

combining the results. The entire array is now sorted

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Key part of
merge-sort

Key part of
quick-sort

Quick-sort (CLRS 7.1)

• Quick-sort:

• Divide: Partition (rearrange) the array into three parts: 𝐴 1: 𝑝 − 1
.<=>?

,I𝐴 𝑝
/7

, 𝐴 𝑝 + 1: 𝑛
.@ABC?

, such
that all elements of 𝐴789: < 𝐴 𝑝 and all elements of 𝐴&;<=: ≥ 𝐴 𝑝 . Also, 𝑎6 = 𝐴 𝑝 is known
as the pivot element. Return index 𝑝.

• Conquer: Sort the two sub-arrays 𝐴789: and 𝐴&;<=: by recursive calls to quick-sort on each half.
• Combine: Because the subarrays are already sorted, no additional work is required for

combining the results. The entire array is now sorted

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Quicksort(A, lo, hi):

if lo < hi:

p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

Quick-sort (CLRS 7.1)

• Quick-sort:

• Divide: Partition (rearrange) the array into three parts: 𝐴 1: 𝑝 − 1
.<=>?

,I𝐴 𝑝
/7

, 𝐴 𝑝 + 1: 𝑛
.@ABC?

, such
that all elements of 𝐴789: < 𝐴 𝑝 and all elements of 𝐴&;<=: ≥ 𝐴 𝑝 . Also, 𝑎6 = 𝐴 𝑝 is known
as the pivot element. Return index 𝑝.

• Conquer: Sort the two sub-arrays 𝐴789: and 𝐴&;<=: by recursive calls to quick-sort on each half.
• Combine: Because the subarrays are already sorted, no additional work is required for

combining the results. The entire array is now sorted

• Key component: Partition
• Returns the final index of the pivot
• Maintains two subarrays which grow

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

Quicksort(A, lo, hi):

if lo < hi:

p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

Quick-sort (CLRS 7.1)

• Key component: Partition
• Returns the final index of the pivot
• Maintains two subarrays which grow
• p returns is the position of the pivot

element in the final sorted array

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

Quicksort(A, lo, hi):

if lo < hi:

p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

Quick-sort (CLRS 7.1)

• Key component: Partition
• Returns the final index of the pivot
• Maintains two subarrays which grow
• p returns is the position of the pivot

element in the final sorted array

• Ex.
• Let A = […, 30, 50, 15, 5, 25, 8, 6, 20, …]
• P = Partition (A, lo, hi)

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

lo
▼

hi
▼

Quick-sort (CLRS 7.1)

• Key component: Partition
• Returns the final index of the pivot
• Maintains two subarrays which grow
• p returns is the position of the pivot

element in the final sorted array

• Ex.
• Let A = […, 30, 50, 15, 5, 25, 8, 6, 20, …]
• P = Partition (A, lo, hi)

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

lo
▼

hi
▼

30 50 15 5 25 8 6 20

p
hi
▼

lo
▼

▲
i

▲
index

Quick-sort (CLRS 7.1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

30 50 15 5 25 8 6 20

p
hi
▼

lo
▼

▲
i

▲
index

30 50 15 5 25 8 6 20
▲
i

▲
index

30 50 15 5 25 8 6 20
▲
i

▲
index

15 50 30 5 25 8 6 20
▲
i

▲
index

Quick-sort (CLRS 7.1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

15 5 30 50 25 8 6 20
▲
i▲

index

15 5 30 50 25 8 6 20
▲
i▲

index

15 5 8 50 25 30 6 20
▲
i▲

index

15 5 8 6 25 30 50 20
▲
i▲

index

Quick-sort (CLRS 7.1)

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

15 5 30 50 25 8 6 20
▲
i▲

index

15 5 30 50 25 8 6 20
▲
i▲

index

15 5 8 50 25 30 6 20
▲
i▲

index

15 5 8 6 25 30 50 20
▲
i▲

index

15 5 8 6 20 30 50 25
▲
i▲

index

Return index = 4
(Note A[4] = 20 is in its right place in the final sorted array)

Quick-sort (CLRS 7.1)

• Let A = […, 30, 50, 15, 5, 25, 8, 6, 20, …]
• P = Partition (A, lo, hi)

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

15 5 30 50 25 8 6 20
▲
i▲

index

15 5 30 50 25 8 6 20
▲
i

▲
index

15 5 8 50 25 30 6 20
▲
i▲

index

15 5 8 6 25 30 50 20
▲
i▲

index

15 5 8 6 20 30 50 25
▲
i▲

indexReturn index = 4

30 50 15 5 25 8 6 20

p
hi
▼

lo
▼

▲
i

▲
index

30 50 15 5 25 8 6 20
▲
i

▲
index

30 50 15 5 25 8 6 20
▲
i

▲
index

15 50 30 5 25 8 6 20
▲
i

▲
index

Quick-sort (CLRS 7.1)

• Important Notes:
• Let x= pivot =A[p]. Then, at each step of the for

loop, we have four regions:
1) A[1 : index-1] all elements < x

2) A[index : i] all elements ≥ x

3) A[i+1 : hi-1] not specified yet!

4) A[hi] = x (the pivot element)

• After calling p = Partition (A, lo, hi), all elements
before pivot = A[p] are less than (<) pivot and all
elements after pivot are not less than (≥) pivot

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

Quick-sort (CLRS 7.1)

• Demo

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

Quicksort(A, lo, hi):

if lo < hi:

p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

Quick-sort (CLRS 7.1)

• Running time?
• It depends!

• Whether the partitioning is balanced or unbalanced.
• Therefore, it depends on which elements are used for partitioning.

• If the partitioning is balanced
• Asymptotically as fast as merge-sort Θ 𝑛 log 𝑛

• If the partitioning is unbalanced
• Asymptotically as slow as insertion-sort Θ 𝑛!

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

Quick-sort (CLRS 7.1)

• Running time? (not a formal proof)
• Worst-case: when the partitioning is unbalanced

• The partition routine produces one subproblem with 𝑛 − 1 elements and one with 0
element. In the worst case, this will happen in each recursive call.

• This can happen when the input array is sorted. (maximally unbalanced)
• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 0 + KΘ 𝑛

>?32424(@4@)

= 𝑇 𝑛 − 1 + Θ 𝑛 ∈ Θ 𝑛!

• Asymptotically as slow as insertion-sort Θ 𝑛!

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

Quick-sort (CLRS 7.1)

• Running time? (not a formal proof)
• Best-case: most even possible split

• The partition routine produces two subproblems, each of size no more than 𝑛/2
𝑇 𝑛 = 2𝑇

𝑛
2
+ Θ 𝑛 ∈ Θ 𝑛 log 𝑛

• Average-case
• Much closer to the best case than to the worst case
• Ex. Assume the Partition subroutine always

produces 9-to-1 proportional split

𝑇 𝑛 = 𝑇
9𝑛
10

+ 𝑇
𝑛
10

+ Θ 𝑛

T(n) ∈ Θ 𝑛 log 𝑛

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

Quick-sort (CLRS 7.1)

• Running time? (not a formal proof)
• In practice:

• For not-worst-case inputs, quick-sort usually outperforms merge-sort.
• Commonly used in sorting libraries.

• Strategies to avoid Θ 𝑛+
• Choosing the pivot element randomly
• Choosing the pivot as the median of three random elements
• Still, the worst case is possible, but highly unlikely

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Partition(A, lo, hi):

choose a pivot element p ∈ [lo, hi]

exchange A[p] with A[hi]

pivot_index ⟵ lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot_index]

pivot_index ++

exchange A[hi] with A[pivot_index]

return pivot_index

Merge-sort vs. Quick-sort
• Merge-sort: (bottom-up: main action during the combining the subproblem solutions)

• Divide: Divide the array into two halves

• Conquer: Sort each half (by recursively executing merge-sort on each half)

• Combine: Merge two halves to make a sorted array

• Quick-sort: (top-down: main action during the breaking the problem into subproblems)
• Divide: Partition (rearrange) the array into three parts:𝐴#$%&, 𝐴 𝑝 , 𝐴'()*&, such that all elements of
𝐴#$%& < 𝐴 𝑝 and all elements of 𝐴'()*& ≥ 𝐴 𝑝 . Also, 𝑎+ = 𝐴 𝑝 is known as the pivot element. Return

index 𝑝. As we divide into subproblems, we find the right position of the pivot element.

• Conquer: Sort the two sub-arrays 𝐴#$%& and 𝐴'()*& by recursive calls to quick-sort on each half.

• Combine: Because the subarrays are already sorted, no additional work is required for combining the
results. The entire array is now sorted

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Merge-sort vs. Quick-sort
• Sorting Problem: Given an input of n elements, re-arrange the

elements in ascending (or descending) order.

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Running time

https://www.toptal.com/developers/sorting-algorithms
http://www.cs3510.com/resources/

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/
https://www.toptal.com/developers/sorting-algorithms
http://www.cs3510.com/resources/

D&C Example: Matrix Multiplication

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

D&C Example: Matrix Multiplication

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

D&C Example: Matrix Multiplication

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

D&C Example: Matrix Multiplication

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Runtime?

Using master theorem:

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#! $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

D&C Example: Matrix Multiplication
• Fast matrix multiplication
• Strassen’s trick

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

D&C Example: Matrix Multiplication
• Fast matrix multiplication
• Strassen’s trick
• To multiply n-by-n matrices:
• Divide:

partition A and B into
1⁄2n-by-1⁄2n blocks.

• Compute:
14 1⁄2n-by-1⁄2n matrices via
10 matrix additions.

• Conquer:
multiply 7 pairs of 1⁄2n-by-1⁄2n
matrices, recursively.

• Combine:
7 products into 4 terms using
8 matrix additions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

D&C Example: Matrix Multiplication
• Fast matrix multiplication
• Strassen’s trick
• To multiply n-by-n matrices:
• Divide:

partition A and B into
1⁄2n-by-1⁄2n blocks.

• Compute:
14 1⁄2n-by-1⁄2n matrices via
10 matrix additions.

• Conquer:
multiply 7 pairs of 1⁄2n-by-1⁄2n
matrices, recursively.

• Combine:
7 products into 4 terms using
8 matrix additions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Runtime?

Using master theorem:

Assume n is power of 2.

D&C Example: Matrix Multiplication
• History of arithmetic complexity of

matrix multiplication

• Conjecture: O(n2+𝜀) for any 𝜀 > 0

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

D&C Example: Closest Pair of Points
• Problem: Given n points in the plane, find a pair of points with the

smallest Euclidean distance between them.

• Applications
• Fundamental geometric primitive.
• Graphics, computer vision,

geographic information systems,
molecular modeling, air traffic control.
• Special case of nearest neighbor

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

D&C Example: Closest Pair of Points
• Problem: Given n points in the plane, find a pair of points with the

smallest Euclidean distance between them.

• Brute force.
• Check all pairs with Θ(n2) distance calculations.

• 1D version.
• Easy O(n log n) algorithm if points are on a line.

• Non-degeneracy assumption.
• No two points have the same x-coordinate.

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

D&C Example: Closest Pair of Points
• Sorting solution?
• Sort by x-coordinate and consider nearby points.
• Sort by y-coordinate and consider nearby points.

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

D&C Example: Closest Pair of Points
• Sorting solution? ❌
• Sort by x-coordinate and consider nearby points.
• Sort by y-coordinate and consider nearby points.

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

D&C Example: Closest Pair of Points
• Divide-and-Conquer
• Divide: draw vertical line L so that n / 2 points on each side.
• Conquer: find closest pair in each side recursively.
• Combine: find closest pair with one point in each side.

• (How? seems like Θ(n2)?!)
• Return best of 3 solutions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

D&C Example: Closest Pair of Points
• Divide-and-Conquer
• Finding closest pair with one point in each side, assuming that distance < δ.
• Observation: suffices to consider only those points within δ of line L.

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

D&C Example: Closest Pair of Points
• Divide-and-Conquer
• Finding closest pair with one point in each side, assuming that distance < δ.
• Observation: suffices to consider only those points within δ of line L.

• Sort points in 2 δ-strip
by their y-coordinate.

• Check distances of only
those points within 7
positions in sorted list!

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

D&C Example: Closest Pair of Points
• Divide-and-Conquer

• Finding closest pair with one point in each side, assuming that distance < δ.
• Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.
• Claim: If |j – i| > 7, then the distance between si and sj is at least δ.

• Proof:
• Consider the 2δ-by-δ rectangle R in strip whose min y-coordinate

is y-coordinate of si
• Distance between si and any point sj above R is ≥ δ

• Subdivide R into 8 squares.

• At most 1 point per square.

• At most 7 other points can be in R. ▪

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

D&C Example: Closest Pair of Points
• Divide-and-Conquer

• Divide:
draw vertical line L so
that n / 2 points on each side.

• Conquer:
find closest pair in each side
recursively.

• Combine:
find closest pair with one point
in each side.

• Return best of 3 solutions.

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

D&C Example: Closest Pair of Points
• Divide-and-Conquer
• Runtime?

Q. Can we achieve O(n log n)?
A. Yes. Don't sort points in strip
from scratch each time. Each
recursive returns two lists: all
points sorted by y coordinate,
and all points sorted by x coordinate.
Sort by merging two pre-sorted lists.

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

References
• The lecture slides are heavily based on the suggested textbooks and the corresponding published

lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

53CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

