CS-3510: Design and Analysis of Algorithms

Divide-and-Conquer II

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

• Goal. Recipe for solving common divide-and-conquer recurrences,

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

T(n)

T(n/b)

T(n/b)

3

...

T(n/b)

where T(0) = 0 and $T(1) = \Theta(1)$.

- $a \ge 1$ is the number of subproblems, also known as "branching factor"
- $b \ge 2$ is the factor by which the subproblem size decreases.
- $f(n) \ge 0$ is the work to divide and combine subproblems.
 - f(n) usually takes polynomial time, i.e., f(n) is $\Theta(n^d)$, where $d \ge 0$

Note:

- a^i = number of subproblems at level *i*
- $k = \log_b n$ levels, i.e., the depth of the recursion tree
- $\frac{n}{h^i}$ = size of subproblem at level *i*

• Goal. Recipe for solving common divide-and-conquer recurrences,

$$T(n/b) \qquad T(n/b) \qquad \cdots \qquad T(n/b)$$

T(n)

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

where
$$T(0) = 0$$
 and $T(1) = \Theta(1)$.

$$f(n) \qquad f(n) \qquad f(n)$$

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

- Three cases can happen...
- But before talking about that, let's have a quick review about "Geometric Series"
 - Geometric series: sum of finite or infinite number of terms that have a constant ratio between each two consecutive terms.
 - Can be written as $a + ar + ar^2 + ar^3 + \cdots$, where *a* is the coefficient of each term and *r* is the common ratio between adjacent terms.
 - It can be shown that:

○ If
$$r \neq 1, 1 + r + r^2 + r^3 + \dots + r^{k-1} = \frac{1-r^k}{1-r}$$

• If
$$r = 1, 1 + r + r^2 + r^3 + \dots + r^{k-1} = k$$

• If
$$r < 1, 1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$$

- Case 1: Total computational cost is dominated by cost of leaves.
- T(n)• Example: n Let T(n) = 3T(n/2) + n with T(1)=1: Then, T(n)= $\Theta(n^{\log_2 3})$ T(n/2)T(n/2)T(n/2)3(n/2)T(n/4)T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) $T(n/4) \quad T(n/4)$ $3^2(n/2^2)$ $\langle N \rangle$ $/ \mathbb{N}$ TAN TAN TAN TAN TAN TAN $\langle N \rangle$ ΛN $3^{i}(n/2^{i})$ $\log_2 n$: $3^{\log_2 n} (n / 2^{\log_2 n})$ T(1) \cdots T(1) T(1) T(1) $r = 3/2 > 1 \qquad T(n) = (1 + r + r^2 + r^3 + \ldots + r^{\log_2 n}) n = \frac{r^{1 + \log_2 n} - 1}{r - 1} n = 3n^{\log_2 3} - 2n$ CS-3510: Design and Analysis of Algorithms | Summer 2022 6

- Case 2: Total computational cost is evenly distributed among levels
- T(n)• Example: Let T(n) = 2T(n/2) + n with T(1) = 1: 2(n/2)T(n/2)T(n/2)Then, $T(n) = \Theta(n \log n)$ T(n/4)T(n/4)T(n/4)T(n/4) $2^{2}(n/2^{2})$ $\log_2 n$ T(n/8) T(n/8) T(n/8) T(n/8)T(n/8) T(n/8) T(n/8) T(n/8) $2^{3}(n/2^{3})$ 정 공 - 영 공 - 영 공 - 영 공 - 영 공 - 이 1 1 T(1) \cdots T(1) T(1) T(1)n(1) $-2^{\log_2 n} = n$ r=1 $T(n) = (1 + r + r^{2} + r^{3} + \ldots + r^{\log_{2} n}) n = n (\log_{2} n + 1)$

• Case 3: Total computational cost is dominated by cost of root

• Goal. Recipe for solving common divide-and-conquer recurrences,

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

where T(0) = 0 and $T(1) = \Theta(1)$.

- $a \ge 1$ is the number of subproblems, also known as "branching factor"
- $b \ge 2$ is the factor by which the subproblem size decreases.
- $f(n) \ge 0$ is the work to divide and combine subproblems.
- If f(n) is $\Theta(n^d)$, where $d \ge 0$:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

• Goal. Recipe for solving common divide-and-conquer recurrences,

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

- Limitation. Master theorem cannot be used if
 - T(n) is not monotone, e.g., T(n) = sin(n)
 - f(n) is not polynomial, e.g., $T(n) = 2T\left(\frac{n}{2}\right) + 2^n$
 - *b* cannot be expressed as a constant, e.g., $T(n) = a T(\sqrt{n}) + f(n)$

 $T(n) \in \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$

 $T(n) = a T\left(\frac{n}{b}\right) + f(n)$

- Now, we can apply master theorem to binary-search and merge-sort:
- Binary search:
 - Recurrence: $T(n) = T\left(\frac{n}{2}\right) + 1$
 - Therefore, a = 1, b = 2, and $f(n) = 1 = \Theta(n^0)$, i.e., d = 0
 - $a = b^d \Longrightarrow T(n) \in \Theta(n^0 \log n) = \Theta(\log n)$
- Merge sort:
 - Recurrence: $T(n) = 2T\left(\frac{n}{2}\right) + n$
 - Therefore, a = 2, b = 2, and $f(n) = n = \Theta(n^1)$, i.e., d = 1
 - $a = b^d \Longrightarrow T(n) \in \Theta(n^1 \log n) = \Theta(n \log n)$

 $T(n) = n \log_2 n$

CS-3510: Design and Analysis of Algorithms | Summer 2022

11

- More examples:
- Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$
- a = 1, b = 2, d = 2
- $a < b^d$ (case 3)

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

$$(n) \in \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

• $T(n) \in \Theta(n^2)$

- More examples: • Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 8$ • $a = 2, b = 4, d = \frac{1}{2}$ • $a = b^d$ (case 2) $T(n) \in \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$
- $T(n) \in \Theta(n^d \log n) = \Theta(\sqrt{n} \log n)$

- More examples:
- Let T(n) = $3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$
- a = 3, b = 2, d = 1
- $a > b^d$ (case 1)

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

 $T(n) \in \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$

D&C Example: Quick-sort

- Sorting Problem: Given an input of n elements, re-arrange the elements in ascending (or descending) order.
 - Space Complexity Algorithm **Running time** Best Average Worst Worst $\Omega(n \log(n))$ $\theta(n \log(n))$ 0(n^2) 0(log(n)) Quicksort Ex. of D&C: $\Theta(n \log n)$ 0(n) $\Omega(n \log(n))$ $\theta(n \log(n))$ 0(n log(n)) Mergesort <u>Ω(n)</u> 0(n) Timsort $\theta(n \log(n))$ $O(n \log(n))$ 0(1) $\Omega(n \log(n))$ $\theta(n \log(n))$ $O(n \log(n))$ Heapsort Bubble Sort <u>Ω(n)</u> θ(n^2) 0(n^2) 0(1) Ex. of Brute force: $\Theta(n^2)$ <u>Ω(n)</u> 0(1) Insertion Sort θ(n^2) 0(n^2) Selection Sort Ω(n^2) Θ(n^2) 0(1) 0(n^2) 0(n) $\theta(n \log(n))$ 0(n^2) Tree Sort $\Omega(n \log(n))$ 0(1) Shell Sort $\Omega(n \log(n)) \quad \Theta(n(\log(n))^2) \quad O(n(\log(n))^2)$ 0(n) $\Omega(n+k)$ θ(n+k) 0(n^2) Bucket Sort 0(n+k) 0(nk) Radix Sort $\Omega(nk)$ $\theta(nk)$ 0(k) **Counting Sort** Ω(n+k) θ(n+k) 0(n+k) https://www.bigocheatsheet.com/ 0(n) <u>Ω(n)</u> $\theta(n \log(n))$ $O(n \log(n))$ Cubesort http://www.cs3510.com/resources/

Array Sorting Algorithms

• Algorithms:

- Similar to merge-sort applies divide-and-conquer paradigm.
- Merge-sort:
 - <u>Divide</u>: Divide the array into two halves
 - <u>Conquer</u>: Sort each half (by recursively executing merge-sort on each half)
 - <u>Combine</u>: Merge two halves to make a sorted array.
- Quick-sort:
 - a_p • <u>Divide</u>: Partition (rearrange) the array into three parts: A[1:p-1], A[p], A[p+1:n], such that all elements of $A_{\text{left}} < A[p]$ and all elements of $A_{\text{right}} \ge A[p]$. Also, $a_p = A[p]$ is known as the <u>pivot</u> element. Return index *p*.

A_{left}

- <u>Conquer</u>: Sort the two sub-arrays A_{left} and A_{right} by recursive calls to quick-sort on each half.
- <u>Combine</u>: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

Aright

- Similar to merge-sort applies <u>divide-and-conquer</u> paradigm.
- Merge-sort:
 - <u>Divide</u>: Divide the array into two halves
 - <u>Conquer</u>: Sort each half (by recursively executing merge-sort on each half)
 - <u>Combine</u>: Merge two halves to make a sorted array.

Key part of merge-sort

• Quick-sort:

A_{left} a_p A_{right}

• <u>Divide</u>: Partition (rearrange) the array into three parts: A[1:p-1], A[p], A[p+1:n], such that all elements of $A_{left} < A[p]$ and all elements of $A_{right} \ge A[p]$. Also, $a_p = A[p]$ is known as the <u>pivot</u> element. Return index p.

- <u>Conquer</u>: Sort the two sub-arrays A_{left} and A_{right} by recursive calls to quick-sort on each half.
- <u>Combine</u>: Because the subarrays are already sorted, <u>no additional work is required</u> for combining the results. The entire array is now sorted

- Quick-sort:
 - <u>Divide</u>: Partition (rearrange) the array into three parts: A[1:p-1], A[p], A[p], A[p+1:n], such that all elements of $A_{left} < A[p]$ and all elements of $A_{right} \ge A[p]$. Also, $a_p = A[p]$ is known as the <u>pivot</u> element. Return index p.
 - <u>Conquer</u>: Sort the two sub-arrays A_{left} and A_{right} by recursive calls to quick-sort on each half.
 - <u>Combine</u>: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

```
Quicksort(A, lo, hi):
    if lo < hi:
        p = partition(A, lo, hi)
        Quicksort(A, lo, p-1)
        Quicksort(A, p+1, r)</pre>
```


• Quick-sort:

- <u>Divide</u>: Partition (rearrange) the array into three parts: A[1:p-1], A[p], A[p], A[p+1:n], such that all elements of $A_{left} < A[p]$ and all elements of $A_{right} \ge A[p]$. Also, $a_p = A[p]$ is known as the <u>pivot</u> element. Return index p.
- <u>Conquer</u>: Sort the two sub-arrays A_{left} and A_{right} by recursive calls to quick-sort on each half.
- <u>Combine</u>: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

Key component: Partition

- Returns the final index of the pivot
- Maintains two subarrays which grow

```
Quicksort(A, lo, hi):
```

if lo < hi:

p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

Quicksort(A, lo, hi):

- if lo < hi:
 - p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)

• Key component: Partition

- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot element in the final sorted array

Partition(A, lo, hi): choose a pivot element $p \in [lo, hi]$ exchange A[p] with A[hi] pivot_index \leftarrow lo for each i = lo : hi-1if A[i] < A[hi]: exchange A[i] with A[pivot index] pivot index ++ exchange A[hi] with A[pivot_index] return pivot index

• Key component: Partition -

- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot element in the final sorted array
- Ex.
- Ex. \checkmark Let A = [..., 30, 50, 15, 5, 25, 8, 6, 20, ...]
- P = Partition (A, lo, hi)

Partition(A, lo, hi): choose a pivot element $p \in [lo, hi]$ exchange A[p] with A[hi] // we can always choose p = hi. // In that case no exchange is required pivot index \leftarrow lo for each i = lo : hi-1if A[i] < A[hi]: exchange A[i] with A[pivot index] pivot index ++ exchange A[hi] with A[pivot index] return pivot index

р

hi

20

• Key component: **Partition**

- Returns the final index of the pivot
- Maintains two subarrays which grow
- p returns is the position of the pivot element in the final sorted array
- Ex. hi
- Ex. Let A = [..., 30, 50, 15, 5, 25, 8, 6, 20, ...]

50

• P = Partition (A, lo, hi)

0

30

index

Partition(A, lo, hi): choose a pivot element $p \in [lo, hi]$ exchange A[p] with A[hi] // we can always choose p = hi. // In that case no exchange is required pivot index \leftarrow lo for each i = lo : hi-1if A[i] < A[hi]: exchange A[i] with A[pivot index] pivot index ++ exchange A[hi] with A[pivot index] return pivot index

15

5

25

8

6

Partition(A, lo, hi): choose a pivot element p ∈ [lo, hi] exchange A[p] with A[hi] // we can always choose p = hi. // In that case no exchange is required pivot_index ← lo for each i = lo : hi-1 if A[i] < A[hi]: exchange A[i] with A[pivot_index] pivot_index ++ exchange A[hi] with A[pivot_index] return pivot_index

Partition(A, lo, hi): choose a pivot element p ∈ [lo, hi] exchange A[p] with A[hi] // we can always choose p = hi. // In that case no exchange is required pivot_index ← lo for each i = lo : hi-1 if A[i] < A[hi]: exchange A[i] with A[pivot_index] pivot_index ++ exchange A[hi] with A[pivot_index] return pivot_index

Partition(A, lo, hi): choose a pivot element p ∈ [lo, hi] exchange A[p] with A[hi] // we can always choose p = hi. // In that case no exchange is required pivot_index ← lo for each i = lo : hi-1 if A[i] < A[hi]: exchange A[i] with A[pivot_index] pivot_index ++ exchange A[hi] with A[pivot_index] return pivot_index

Return index = 4

(Note A[4] = 20 is in its right place in the final sorted array)

- Let A = [..., 30, 50, 15, 5, 25, 8, 6, 20, ...]
- P = Partition (A, lo, hi)

index

i

- Important Notes:
 - Let x= pivot =A[p]. Then, at each step of the for loop, we have four regions:
 - 1) A[1: index-1] all elements < x
 - 2) A[index : i] all elements $\geq x$
 - 3) A[i+1: hi-1] not specified yet!
 - 4) A[hi] = x (the pivot element)

• After calling p = Partition (A, lo, hi), all elements before pivot = A[p] are less than (<) pivot and all elements after pivot are not less than (≥) pivot

```
Partition(A, lo, hi):
    choose a pivot element p ∈ [lo, hi]
    exchange A[p] with A[hi]
    // we can always choose p = hi.
    // In that case no exchange is required
    pivot_index ← lo
    for each i = lo : hi-1
        if A[i] < A[hi]:
            exchange A[i] with A[pivot_index]
            pivot_index ++
    exchange A[hi] with A[pivot_index]
        return pivot_index
```


Quicksort(A, lo, hi):

- if lo < hi:
 - p = partition(A, lo, hi)

Quicksort(A, lo, p-1)

Quicksort(A, p+1, r)


```
Partition(A, lo, hi):
   choose a pivot element p \in [lo, hi]
   exchange A[p] with A[hi]
   pivot_index \leftarrow lo
   for each i = lo : hi-1
      if A[i] < A[hi]:
          exchange A[i] with A[pivot index]
          pivot index ++
   exchange A[hi] with A[pivot_index]
   return pivot index
```


- Running time?
 - It depends!
 - Whether the partitioning is balanced or unbalanced.
 - Therefore, it depends on which elements are used for partitioning.
 - If the partitioning is <u>balanced</u>
 - Asymptotically as fast as merge-sort $\Theta(n \log n)$
 - If the partitioning is <u>unbalanced</u>
 - Asymptotically as slow as insertion-sort $\Theta(n^2)$

- Running time? (not a formal proof)
 - Worst-case: when the partitioning is <u>unbalanced</u>
 - The partition routine produces one subproblem with n 1 elements and one with 0 element. In the worst case, this will happen in each recursive call.
 - This can happen when the input array is sorted. (maximally unbalanced)

•
$$T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n) \in \Theta(n^2)$$

Partitioning

• Asymptotically as slow as insertion-sort $\Theta(n^2)$

- Running time? (not a formal proof)
 - Best-case: most even possible split
 - The partition routine produces two subproblems, each of size no more than n/2

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \in \Theta(n\log n)$$

- Average-case
 - Much closer to the best case than to the worst case
 - Ex. Assume the Partition subroutine always produces 9-to-1 proportional split

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + \Theta(n)^{\log_{10/9} n}$$

 $T(n) \in \Theta(n \log n)$

 $\frac{1}{10}n$

 $\log_{10} n$

31

cn

cn

- Running time? (not a formal proof)
 - In practice:
 - For not-worst-case inputs, quick-sort usually outperforms merge-sort.
 - Commonly used in sorting libraries.
 - Strategies to avoid $\Theta(n^2)$
 - Choosing the pivot element randomly
 - Choosing the pivot as the median of three random elements
 - Still, the worst case is possible, but highly unlikely

Partition(A, lo, hi):	
choose a pivot element $p \in [lo,$	hi]
exchange A[p] with A[hi]	
pivot_index ← lo	
for each $i = lo : hi-1$	
if A[i] < A[hi]:	
exchange A[i] with A[pivo	ot_index]
pivot_index ++	
exchange A[hi] with A[pivot_inde	ex]
return pivot_index	

Merge-sort vs. Quick-sort

- Merge-sort: (bottom-up: main action during the combining the subproblem solutions)
 - Best Worst Average • Divide: Divide the array into two halves Quicksort $\Omega(n \log(n))$ $\theta(n \log(n))$ 0(n^2) $\theta(n \log(n))$
 - Mergesort $\Omega(n \log(n))$ • <u>Conquer</u>: Sort each half (by recursively executing merge-sort on cach half)
 - <u>Combine</u>: Merge two halves to make a sorted array
- Quick-sort: (top-down: main action during the breaking the problem into subproblems)
 - <u>Divide</u>: Partition (rearrange) the array into three parts: A_{left} , A[p], A_{right} , such that all elements of $A_{\text{left}} < A[p]$ and all elements of $A_{\text{right}} \ge A[p]$. Also, $a_p = A[p]$ is known as the <u>pivot</u> element. Return index p. As we divide into subproblems, we find the right position of the pivot element.
 - <u>Conquer</u>: Sort the two sub-arrays A_{left} and A_{right} by recursive calls to quick-sort on each half.
 - <u>Combine</u>: Because the subarrays are already sorted, no additional work is required for combining the results. The entire array is now sorted

 $O(n \log(n))$

Merge-sort vs. Quick-sort

• Sorting Problem: Given an input of n elements, re-arrange the elements in ascending (or descending) order.

Array Sorting Algorithms

Algorithm Bes	Running time		Space Complexity									
	Best	Average	Worst	Worst	Play All	Insertion	Selection	Bubble	Shell	Merge	Неар	
Quicksort	Ω(n log(n))	θ(n log(n))	0(n^2)	0(log(n))								_
<u>Mergesort</u>	Ω(n log(n))	θ(n log(n))	0(n log(n))	0(n)								
Timsort	<u>Ω(n)</u>	θ(n log(n))	0(n log(n))	0(n)	Random							
leapsort	$\Omega(n \log(n))$	θ(n log(n))	0(n log(n))	0(1)								-
Bubble Sort	<u>Ω(n)</u>	θ(n^2)	0(n^2)	0(1)								
Insertion Sort	<u>Ω(n)</u>	θ(n^2)	0(n^2)	0(1)	Nearly Sorted							
Selection Sor	Ω(n^2)	θ(n^2)	0(n^2)	0(1)								-
Tree Sort	$\Omega(n \log(n))$	θ(n log(n))	0(n^2)	0(n)		sed						
Shell Sort	$\Omega(n \log(n))$	θ(n(log(n))^2)	0(n(log(n))^2)	0(1)	Reversed							
Bucket Sort	Ω(n+k)	θ(n+k)	0(n^2)	<mark>0(n)</mark>		F	F	F	F	F	F	-
Radix Sort	Ω(nk)	θ(nk)	0(nk)	0(n+k)								
Counting Sort	Ω(n+k)	θ(n+k)	0(n+k)	0(k)	Few Unique							
Cubesort	<u>Ω(n)</u>	θ(n log(n))	0(n log(n))	0(n)								

https://www.toptal.com/developers/sorting-algorithms http://www.cs3510.com/resources/

https://www.bigocheatsheet.com/ http://www.cs3510.com/resources/

CS-3510: Design and Analysis of Algorithms | Summer 2022

Quick

Quick3

D&C Example: Matrix Multiplication

Matrix multiplication. Given two *n*-by-*n* matrices *A* and *B*, compute C = AB. Grade-school. $\Theta(n^3)$ arithmetic operations.

$$c_{ij} = \sum_{k=1}^n a_{ik} \, b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$\begin{bmatrix} .59 & .32 & .41 \\ .31 & .36 & .25 \\ .45 & .31 & .42 \end{bmatrix} = \begin{bmatrix} .70 & .20 & .10 \\ .30 & .60 & .10 \\ .50 & .10 & .40 \end{bmatrix} \times \begin{bmatrix} .80 & .30 & .50 \\ .10 & .40 & .10 \\ .10 & .30 & .40 \end{bmatrix}$$

CS-3510: Design and Analysis of Algorithms | Summer 2022

D&C Example: Matrix Multiplication

To multiply two *n*-by-*n* matrices *A* and *B*:

- Divide: partition A and B into ½n-by-½n blocks.
- Conquer: multiply 8 pairs of ½*n*-by-½*n* matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

(of ½n-by-½n matrices)

To multiply two *n*-by-*n* matrices *A* and *B*:

- Divide: partition A and B into ½n-by-½n blocks.
- Conquer: multiply 8 pairs of ½*n*-by-½*n* matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

$$T(n) \in \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

- Fast matrix multiplication
 - Strassen's trick

Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications (plus 11 additions and 7 subtractions).

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$P_{1} \leftarrow A_{11} \times (B_{12} - B_{22})$$

$$P_{2} \leftarrow (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} \leftarrow (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} \leftarrow A_{22} \times (B_{21} - B_{11})$$

$$P_{5} \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} \leftarrow (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Pf. $C_{12} = P_1 + P_2$ = $A_{11} \times (B_{12} - B_{22}) + (A_{11} + A_{12}) \times B_{22}$

 $= A_{11} \times B_{12} + A_{12} \times B_{22}$.

7 scalar multiplications

- Fast matrix multiplication Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications (plus 11 additions and 7 subtractions).
 - Strassen's trick
 - To multiply n-by-n matrices:
 - Divide: partition A and B into 1/2n-by-1/2n blocks.
 - Compute: 14 1/2n-by-1/2n matrices via 10 matrix additions.
 - Conquer: multiply 7 pairs of 1/2n-by-1/2nmatrices, recursively.
 - Combine:

7 products into 4 terms using

Pf. $C_{12} = P_1 + P_2$

 $= A_{11} \times (B_{12} - B_{22}) + (A_{11} + A_{12}) \times B_{22}$

scalars

 $= A_{11} \times B_{12} + A_{12} \times B_{22}$.

 $C_{11} = P_5 + P_4 - P_2 + P_6$

 $C_{22} = P_1 + P_5 - P_3 - P_7$

 $C_{12} = P_1 + P_2$

 $C_{21} = P_3 + P_4$

 $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ $P_1 \leftarrow A_{11} \times (B_{12} - B_{22})$ $P_2 \leftarrow (A_{11} + A_{12}) \times B_{22}$ $P_3 \leftarrow (A_{21} + A_{22}) \times B_{11}$ $P_4 \leftarrow A_{22} \times (B_{21} - B_{11})$ $P_5 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$ $P_6 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$

 $P_7 \leftarrow (A_{11} - A_{21}) \times (B_{11} + B_{12})$

7 scalar multiplications

- - 8 matrix additions.

40

• Fast matrix multiplication

- Strassen's trick
- To multiply n-by-n matrices:
- <u>Divide:</u> partition *A* and *B* into 1/2*n*-by-1/2*n* blocks.
- <u>Compute:</u> 14 1/2*n*-by-1/2*n* matrices via 10 matrix additions.
- <u>Conquer:</u> multiply 7 pairs of 1/2*n*-by-1/2*n* matrices, recursively.
- <u>Combine:</u> 7 products into 4 terms using 8 matrix additions.

Using master theorem:

Assume n is power of 2.

$$T(n) = \underbrace{7T(n/2)}_{} + \underbrace{\Theta(n^2)}_{}$$

recursive calls add, subtract

$$T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

• History of arithmetic complexity of matrix multiplication

• Conjecture: $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$

year	algorithm	arithmetic operations	
1858	"grade school"	$O(n^3)$	
1969	Strassen	$O(n^{2.808})$	
1978	Pan	$O(n^{2.796})$	T
1979	Bini	$O(n^{2.780})$	
1981	Schönhage	$O(n^{2.522})$	
1982	Romani	$O(n^{2.517})$	
1982	Coppersmith-Winograd	$O(n^{2.496})$	galactic algorithms
1986	Strassen	$O(n^{2.479})$	
1989	Coppersmith-Winograd	$O(n^{2.3755})$	
2010	Strother	$O(n^{2.3737})$	
2011	Williams	$O(n^{2.372873})$	
2014	Le Gall	$O(n^{2.372864})$	1
	555	$O(n^{2+\varepsilon})$	
2022		42	

• Problem: Given *n* points in the plane, find a pair of points with the smallest Euclidean distance between them.

• Applications

- Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor

- Problem: Given *n* points in the plane, find a pair of points with the smallest Euclidean distance between them.
- Brute force.
 - Check all pairs with $\Theta(n^2)$ distance calculations.
- 1D version.
 - Easy $O(n \log n)$ algorithm if points are on a line.
- Non-degeneracy assumption.
 - No two points have the same *x*-coordinate.

• Sorting solution?

- Sort by *x*-coordinate and consider nearby points.
- Sort by *y*-coordinate and consider nearby points.

CS-3510: Design and Analysis of Algorithms | Summer 2022

• Sorting solution? 🗙

- Sort by *x*-coordinate and consider nearby points.
- Sort by *y*-coordinate and consider nearby points.

• Divide-and-Conquer

• <u>Divide</u>: draw vertical line L so that n/2 points on each side.

12

47

- <u>Conquer</u>: find closest pair in each side recursively.
- <u>Combine</u>: find closest pair with one point in each side.
 - (How? seems like $\Theta(n2)$?!)
- Return best of 3 solutions.

• Divide-and-Conquer

- Finding closest pair with one point in each side, assuming that distance $< \delta$.
- Observation: suffices to consider only those points within δ of line *L*.

• Divide-and-Conquer

- Finding closest pair with one point in each side, assuming that distance $< \delta$.
- Observation: suffices to consider only those points within δ of line *L*.

• Divide-and-Conquer

- Finding closest pair with one point in each side, assuming that distance $< \delta$.
- Let s_i be the point in the 2 δ -strip, with the i^{th} smallest y-coordinate.
- Claim: If |j i| > 7, then the distance between s_i and s_j is at least δ .

• Proof:

- Consider the 2δ -by- δ rectangle *R* in strip whose min *y*-coordinate is *y*-coordinate of s_i
- Distance between s_i and any point s_j above R is $\geq \delta$
- Subdivide *R* into 8 squares. diameter is $\delta / \sqrt{2} < \delta$
- At most 1 point per square. 🖊
- At most 7 other points can be in *R*. •

 $\cdot 2\delta$

1/28

1/28

L

R

δ

Sj

- Divide-and-Conquer
 - <u>Divide</u>: draw vertical line *L* so that *n* / 2 points on each side.
 - <u>Conquer</u>: find closest pair in each side recursively.
 - <u>Combine</u>: find closest pair with one point in each side.
 - Return best of 3 solutions.

CLOSEST-PAIR (p_1, p_2, \ldots, p_n)

Compute vertical line L such that half the points are on each side of the line.

 $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$

 $\delta_2 \leftarrow \text{CLOSEST-PAIR}(\text{points in right half}).$

 $\delta \leftarrow \min \{ \delta_1, \delta_2 \}.$

Delete all points further than δ from line *L*.

Sort remaining points by *y*-coordinate.

Scan points in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ , update δ .

Return δ .

- Divide-and-Conquer
- Runtime?

 $T(n) \le 2T(n/2) + O(n \log n)$ $\Rightarrow T(n) = O(n \log^2 n)$

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time. Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate. Sort by merging two pre-sorted lists.

CLOSEST-PAIR (p_1, p_2, \ldots, p_n)

Compute vertical line *L* such that half the points are on each side of the line.

 $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$

 $\delta_2 \leftarrow \text{CLOSEST-PAIR}(\text{points in right half}).$

 $\delta \leftarrow \min \{ \delta_1, \delta_2 \}.$

Delete all points further than δ from line *L*.

Sort remaining points by *y*-coordinate.

Scan points in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ , update δ .

Return δ .

$T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n)$

O(n)

T(n/2)

T(n/2)

O(n)

O(n)

- $O(n \log n)$

References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.
 - Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

