CS-3510:
Design and Analysis of Algorithms

Divide-and-Conquer 11

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022

Roadmap

\
2
¥/ Qrart2:
. -Recursion
. -Divide-and-Conquer

OPart 4:

OPart 1:
-Introduction, | /~ dPart 3 Y
-Analysis of Algorithms \(iatc Srogramniing QPart 5: Graph Algorithm
-Asymptotic Order of Growth —~ - Definition, Traversal
-Big-O Notation - Grid Problems
- Minimum Spanning Tree
| - Shortest Path Problem

OPart 6:

Network Flow - Topological Sorting

QPart 7:

-NP-Completeness -

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

-Greedy Algorithm

Master Theorem

* Goal. Recipe for solving common divide-and-conquer recurrences,

n
T(n) = aT(E) + f(n)
where 7(0) =0 and 7(1) = O(1).
* a =1 is the number of subproblems, also known as “branching factor”
* b =72 is the factor by which the subproblem size decreases. r'n)

* f(n) =0 1s the work to divide and combine subproblems.
* f(n) usually takes polynomial time, i.e., f (n) is ®(n?), where d > 0

Note:

* a' = number of subproblems at level i T(n!b) T(m/b) -+ T(nlb)
* k = logy, nlevels, i.e., the depth of the recursion tree

. nl. = size of subproblem at level i /l\ /| \ /| \

=y

e
4

Master Theorem i

* Goal. Recipe for solving common divide-and-conquer recurrences, ‘

T(n/b) T(n/b) -+ T(n/b)
() =aT(7)+f@) NN PR
where T(0) =0 and 7(1) = ©(1).
(0)=0and T(1) = @) PR R SEEPS
/q_>\
f(ny) f(ny) J(ny) e - af(n)
fnz) f(ny) - f(n2) fz) f(ny) - f(n2) fn2) f(na) - f(ng) = - a? f(ny)
* Three cases can happen... Y e() 6() (1) 8() 6(1) 8d) (1) 8(1) 6() (1) ... O() O(1) O() i O
@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Master Theorem

* Three cases can happen...

* But before talking about that, let’s have a quick review about “Geometric Series”

 Geometric series: sum of finite or infinite number of terms that have a constant ratio between
each two consecutive terms.

 Can be written as a + ar + ar? + ar3 + ---, where a is the coefficient of each term and r is
the common ratio between adjacent terms.

e [t can be shown that:

1—rk

olfr+#1,1+r+r2+r34+.+rkl=

1-7r

olfr=1,14+r+r2+r3+--+rkl=k

oIfr<1,1+r+r2+r3+---=1—ir

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

Master Theorem

* Case 1: Total computational cost is dominated by cost of leaves.
T (n)

* Example: i
Let T(n) = 3T(n/2)+n with T(1)=1:
Then, T(n)= 0 (n!°82 3) T(n/2) T(n/2) T(n/2) 3(n/2)
T(n/4) Tm/4d) Tml/d) Tml/4) Tm/4) Tn/4) Tml/4d) Tm/4) Tn/4) 32(n/22)
log2n 3'(n/2)
T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) T(i) v 3lo82 1 (y, / 9loB2 ™)
3log2 n _ nlog2 3
,,,.1+log2 n_1
r=3/2>1—T(n)=0+ririyrd 4+ rlotn)y = n = 3nlo&23 _9p

r—1

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Master Theorem

« Case 2: Total computational cost 1s evenly distributed among levels

T (n) 4 L
* Example: / \
Let T(n) = 2T(n/2)+n with T(1)=1: T(n/2) T2 2(n/2)
Then, T(n)= ©(nlogn) / \ / \
T(n/4) T(n/4) T(n/4) T(n/4) 22 (n/2?)
NN/ e
T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) 2 (n123)
Iy T() T() T() T() T() T() T() TQ) T(A) =+ T() Q) T(1) | n(1)
2los2 " — 1y
r=1 Tn)=QQ+r+r2+rP+...+r°")n = n(logzn+1)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Master Theorem

« Case 3: Total computational cost 1s dominated by cost of root

T (n)
* Example: i
Let T(n) = 3T(n/4)+n> with T(1)=1:
Then, T(n)= ®(n°) T(n/4) T(n/4) T(n/4) 3(n/4)5
T(n/16) T(n/16) T(n/16) Tm/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) 32(n/4%)>5
logsan 3i(n /4%
T(1) TA) T(A) T() T(1) T(1) T) TA) T() T(A) *++ Ty T(1) T(1) 31084 71 /41084 5
3log4n — nlog43
r=3/4<1 mwW<Tmh <A+r+r?+r3+..)n < ; : n’
-r
8

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Master Theorem

* Goal. Recipe for solving common divide-and-conquer recurrences,

n

T(n) = aT(b) + f(n)
where 7(0) =0 and 7(1) = O(1).
* a =1 is the number of subproblems, also known as “branching factor”
* b =2 is the factor by which the subproblem size decreases.

* f(n) =0 1s the work to divide and combine subproblems.
e If f(n)is ©(n%), where d > 0:

f

O(n'°8») ifa > b (case 1)
T(n) =< 0(n%logn),ifa = b® (case 2)
k@(nd), ifa < b?® (case 3)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

Master Theorem

* Goal. Recipe for solving common divide-and-conquer recurrences,
n

T(n) =aT(b)+f(n)

-

@(nlogb a), ifa > b? (case 1)
T(n) =< 0(n%logn),ifa = b% (case 2)
L@(nd), ifa < b? (case 3)

e [imitation. Master theorem cannot be used if
* T(n) is not monotone, e.g., T(n) = sin(n)

* f(n) is not polynomial,e.g.,T(n) = 2T (g) 4 on
* b cannot be expressed as a constant, e.g., T(n) = a T(/n) + f(n)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

T(n) —aT()+f(n)

Master Theorem

G)(nlogb a), ifa > h? (case 1)
T(n) € < O(n%logn),ifa=>b

2 (case 2)

Lw(nd), ifa< b (case 3)
* Now, we can apply master theorem to binary-search and merge-sort:
T (n)
* Binary search: | o
* Recurrence: T(n) =T (g) +1 T /49 T(n/4 T(n/4) T/4

 Therefore,a =1,b=2,and f(n) =1 =0("n°),ie..d=0
« a=b%= T(n) € 0(n®logn) = O(logn)

* Merge sort:
* Recurrence: T(n) = 2T (g) +n

e Therefore,a =2,b=2,and f(n) =n=0(n'),ie.,d=1
e a =b%= T(n) € 0(n'logn) = O(nlogn)

i /\

T(n/2)

DN

T(n/4) T(n/4)

/\ /\

T(n)

T(n/2)

AN

T(n/4) T(n/4)

/\ /\

T(/8) T(/8) T(/8) T(/8) T(/8) T(/8) T(/8) T(/8)

L\ /\ /\

T(/8) T(/8 T(n /8) T(/8) T(/8) T(/8) T(/8) T(/8)

2 (n/2) =n
4 (n/4) =n
8 (n/8) =n

T(n) =nlog2n

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

11

Master Theorem

* More examples: Tn)=aT (%) + f(n)
e Let T(n) = T(z) +-n2+n
2 2 -
ca=1,b=2,d =2 G)(nlogb a), if a > b? (case 1)
e a < b? (case 3) T(n) € { ©(n%logn),ifa = b% (case 2)
L(F)(nd), ifa < b? (case 3)

* T(n) € O(n?)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

12

Master Theorem

* More examples: T(n) =aT (%) + f(n)
e Let T(n) = ZT(%) +n+8
;
ca=2b=4,d 5 O(n'°8» %), ifa > b4 (case 1)
_ pd > = T(n) €4 0(n%logn),ifa = b (case 2)
“H {cast) L(F)(nd), ifa < b? (case 3)

* T(n) € ©(n%logn) = O(ynlogn)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

13

Master Theorem

° . n
More examples: T(n) =aT (E) +f(n)
e Let T(n) = 3T (g) +%n +11
:
*la=3h=Pd=1 G)(nlogb a), ifa > b? (case 1)
e a > b? (case 1) T(n) €< O(n%logn),ifa = b? (case 2)
L(F)(nd), ifa < b? (case 3)

* T(n) € O(nlo823)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

14

D&C Example: Quick-sort

* Sorting Problem: Given an input of n elements, re-arrange the

elements 1n ascending (or descending) order.

Array Sorting Algorithms

Algorithm | Running time | Space Complexity

* Algorithms:

Best Average Worst Worst

i acn 1 o(n 1 0(nA2 oC1
Quicksort [A¢n log(n))| [6Cn log(n))| (nA2) (log(n)) | Ex. of D&C: G)(n log n)
Mergesort acn log(n))| [e¢n log(n))l [0(n log(n))] 0(n)

Timsort lacm| [ecn 1ogm)| [0Cn 1og(n)] locm)]
Heapsort [(n log(n))] [6Cn log(n)| [0¢n log(n))] [o)]
Bubble Sort [acn) | 16(n"2) |
Insertion Sort an)

!

Selection Sort |A(nA2) 0(nA2
Tree Sort [0Cn log(n))| [6Cn log(n))]
Shell Sort In(n log(n))] [e(nCIOQ(n))AZ)I [0(n(log(n)
Bucket Sort

(a0
Radix Sort [acnko|
[IGS)

Counting Sort

https://www.bigocheatsheet.com/

Cubesort In(n)] Ie(n log(n))l [0(n Iog(n))]

Ex. of Brute force: ®(n?)

http://www.cs3510.com/resources/

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

15

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

QUiCk-SOI’t (CLRS 7.1)

Similar to merge-sort applies divide-and-conquer paradigm.

Merge-sort:
* Divide: Divide the array into two halves

» Conquer: Sort each half (by recursively executing merge-sort on each half)
* Combine: Merge two halves to make a sorted array.

Quick-sort:

Aleft Ap Aright

7~ N 7~ N

 Divide: Partition (rearrange) the array into three parts: A[1:p — 1], A[p],A[p + 1:n], such
that all elements of Ajef < A[p] and all elements of Ayjgne > A[p]. Also, a,, = A[p] is known as
the pivot element. Return index p.

* Conquer: Sort the two sub-arrays Ajefr and Apjgne by recursive calls to quick-sort on each half.

» Combine: Because the subarrays are already sorted, no additional work 1s required for
combining the results. The entire array is now sorted

e
4

QUiCk-SOI’t (CLRS 7.1)

* Similar to merge-sort applies divide-and-conquer paradigm.

* Merge-sort:

* Quick-sort:

* Divide: Divide the array into two halves
» Conquer: Sort each half (by recursively executing merge-sort on each half)
* Combine: Merge two halves to make a sorted array.

Key part of

merge-sort

Key part of

quick-sort

Algft ap Aright

- N e -

 Divide: Partition (rearrange) the array into three parts: A[1:p — 1], A[p],A[p + 1:n], such
that all elements of A;.r <A[p] and all elements of A5 > A[p]. Also, a,, = A[p] is known
as the pivot element. Return index p.

* Conquer: Sort the two sub-arrays Ajery and Ayjgpe by recursive calls to quick-sort on each hallf.

» Combine: Because the subarrays are already sorted, no additional work is required for
combining the results. The entire array is now sorted

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 17

QUiCk-SOI’t (CLRS 7.1)

* Quick-sort:
Algft ap Aright
 Divide: Partition (rearrange) the array into three parts: A[1:p — 1], A[p], Al[p + 1:n], such
that all elements of A;.r; <A[p] and all elements of A5 > A[p]. Also, a,, = A[p] is known

as the pivot element. Return index p.

* Conquer: Sort the two sub-arrays Ajery and Ayjgpe by recursive calls to quick-sort on each hallf.

* Combine: Because the subarrays are already sorted, no additional work 1s required for
combining the results. The entire array is now sorted

Quicksort (A, lo, hi):
if lo < hi:
p = partition(A, lo, hi)
Quicksort (A, lo, p-1)

Quicksort (A, p+l, r)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 18

QUiCk-SOI’t (CLRS 7.1)

* Quick-sort:
Al?ft ap Aright
 Divide: Partition (rearrange) the array into three parts: A[1:p — 1], A[p], Al[p + 1:n], such
that all elements of A;.r; <A[p] and all elements of A5 > A[p]. Also, a,, = A[p] is known

as the pivot element. Return index p.
* Conquer: Sort the two sub-arrays Ajery and Ayjgpe by recursive calls to quick-sort on each hallf.

* Combine: Because the subarrays are already sorted, no additional work 1s required for
combining the results. The entire array is now sorted

* Key component: Partition uidrhart el T THi
* Returns the final index of the pivot if lo < hi:
* Maintains two subarrays which grow p = partition(a, lo, hi)

Quicksort (A, lo, p-1)

Quicksort (A, p+l, r)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022 19

QUiCk-SOI’t (CLRS 7.1)

Quicksort (A, lo, hi):
if lo < hi:
p = partition(A, lo, hi)
Quicksort (A, lo, p-1)

Quicksort (A, p+l, r)

v

» Key component: Partition
* Returns the final index of the pivot

* Maintains two subarrays which grow

 p returns 1s the position of the pivot
clement in the final sorted array

Partition(A, lo, hi):
choose a pivot element p € [lo, hi]
exchange A[p] with A[hi]
pivot index « 1lo
for each i = lo hi-1

if A[i] < A[hi]:

exchange A[1] with A[pivot index]

pivot index ++
exchange A[hi] with A[pivot index]

return pivot index

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

20

QUiCk-SOI’t (CLRS 7.1)

Partition(A, lo, hi):

Key component: Partition
* Returns the final index of the pivot

A 4

choose a pivot element p € [lo, hi]

- . - exchange A[p] with A[hi]
e Maintains two subarrays which grow

// we can always choose p = hi.

; p TELQUS 15 the pOSlthIl Of the prOt // In that case no exchange is required
clement in the final sorted array 0 A
v IE)(. |O hi for each i = 1lo : hi-1

if A[i] < A[hi]:

v v
Let A: [..., 309 50, 15, 5, 25, 8, 6, 20, ...] exchange A[i] with A[pivot index]
P = Partition (A, lo, h1) pivot_index ++

exchange A[hi] with A[pivot index]

return pivot index

% CS-3510: Design and Analysis of Algorithms | Summer 2022 21

QUiCk-SOI’t (CLRS 7.1)

e Maintains two subarrays which grow
 p returns 1s the position of the pivot

Key component: Partition
* Returns the final index of the pivot

Partition(A, lo, hi):

A 4

choose a pivot element p € [lo, hi]
exchange A[p] with A[hi]
// we can always choose p = hi.

// In that case no exchange is required

clement in the final sorted array pivot index «— lo

 Ex. lo

lo
v

\/ \4
Let A=]..., 30,50, 15,5, 25,8, 6,20, ...]
P = Partition (A, lo, h1)

hi for each i = lo : hi-1

if A[i] < A[hi]:
exchange A[1i] with A[pivot index]
pivot index ++

exchange A[hi] with A[pivot index]

P return pivot index

30

50

15

251 8 | 6 | 20

A A

index |

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 22

QUiCk-SOI’t (CLRS 7.1)

P
lo hi Partition(A, lo, hi):
v v choose a pivot element p € [lo, hi]
30 | 50 15 5 25 20 exchange A[p] with A[hi]
A A // we can always choose p = hi.
indexi // In that case no exchange is required
pivot index « 1lo
30 50 15 5 25 20 for each i = 1lo : hi-1
A A if A[i] < A[hi]:
index : exchange A[i] with A[pivot index]
30|50 | 15| 5 |25 20 b2 s e S
exchange A[hi] with A[pivot index]
indAex f return pivot index
15501 B0 51 125 20
A A
index I

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 23

QUiCk-SOI’t (CLRS 7.1)

15 30 50 25 8 6 20 Partition(A, lo, hi):
A A choose a pivot element p € [lo, hi]
index | exchange A[p] with A[hi]
// we can always choose p = hi.
15 30 | 50 | 25 | 8 6 | 20
// In that case no exchange is required
A A pivot index « 1lo
index |
for each i = 1lo : hi-1
15 8 |50 [25 (30| 6 |20 if A[i] < A[hi]:
A A exchange A[i] with A[pivot index]
index [pivot index ++
exchange A[hi] with A[pivot index]
15 8 6 | 25|30 | 50 | 20 : .
return pivot_index
A A
index |

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 24

QUiCk-SOI’t (CLRS 7.1)

15 30 50 25 8 6 20 Partition(A, lo, hi):
A A choose a pivot element p € [lo, hi]
index | exchange A[p] with A[hi]

// we can always choose p = hi.

15 30 | 50 | 25 | 8 6 | 20
// In that case no exchange is required

A A pivot index « 1lo
index |

for each i = 1lo : hi-1

15 8 |50 [25 (30| 6 |20 if A[i] < A[hi]:

A A exchange A[1i] with A[pivot index]
index [pivot_ index ++

exchange A[hi] with A[pivot index]

15 8 6 | 25|30 | 50 | 20 : .
return pivot_index

A A
index |
15 8 6 20 | 30 | 50 | 25 Return index = 4
A f (Note A[4] =20 is in its right place in the final sorted array)
index

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 25

QUiCk-SOI’t (CLRS 7.1)

e Let A=[..., 30,50, 15, 5, 25, 8, 6, 20, ...]

I5] 5 |30 |50 |25 8 6 | 20
* P = Partition (A, lo, hi) p A A
lo hi index |
\ £ \/
*o (30T T35 g 6 | 20 1515 301 501125 1 18 6 | 20
AA A A
index index '
30 (50155 (258 | 6|20 1515815072530] 6 |20
A A A A
index | index |
30 | 50| 15| 5 |25 8 6 | 20 TS 8 6 | 25|30 |50 | 20
A A A -
index [index |
15150 (30| 5 |25 8 6 | 20 15 [15 8 6 | 20 | 30 | 50 | 25
A
mﬁex f Return index = 4 inﬁex i
@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 26

QUiCk-SOI’t (CLRS 7.1)

* Important Notes:
* Let x=pivot =A[p]. Then, at each step of the for
loop, we have four regions:
1) A[l :index-1] all elements < x
2) Alindex : 1] all elements > x
3) A[i+1: hi-1] not specified yet!
4) Afhi] = x (the pivot element)

W——/
<Xx > x unrestricted

 After calling p = Partition (A, lo, hi), all elements
before pivot = A[p] are less than (<) pivot and all
elements after pivot are not less than (>) pivot

Partition(A, lo, hi):

choose a pivot element p € [lo, hi]

exchange A[p] with A[hi]

// we can always choose p = hi.

// In that case no exchange is required

pivot index « 1lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[i] with A[pivot index]
pivot index ++

exchange A[hi] with A[pivot index]

return pivot index

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

27

QUiCk-SOI’t (CLRS 7.1)

Quicksort (A, lo, hi):
if lo < hi:
p = partition(A, lo, hi)
Quicksort (A, lo, p-1)

Quicksort (A, p+l, r)

e Demo

Partition(A, lo, hi):

choose a pivot element p € [lo, hi]

exchange A[p] with A[hi]

pivot index « 1lo

for each i = lo : hi-1

if A[i] < A[hi]:

exchange A[1] with A[pivot index]
pivot index ++

exchange A[hi] with A[pivot index]

return pivot index

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 28

QUiCk-SOI’t (CLRS 7.1)

* Running time?
* It depends!

* Whether the partitioning is balanced or unbalanced.

* Therefore, 1t depends on which elements are used for partitioning.

* If the partitioning 1s balanced
« Asymptotically as fast as merge-sort ©(n logn)

* If the partitioning 1s unbalanced
* Asymptotically as slow as insertion-sort @(n?)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

29

QUiCk-SOI’t (CLRS 7.1)

* Running time? (not a formal proof)

* Worst-case: when the partitioning 1s unbalanced

* The partition routine produces one subproblem with n — 1 elements and one with 0
element. In the worst case, this will happen in each recursive call.

* This can happen when the input array is sorted. (maximally unbalanced)
e T =Th—-D+TO)+ O0(n) =Tnh-1)+060Mn) € 0(n?

——
Partitioning

* Asymptotically as slow as insertion-sort @(n?)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

30

QUiCk-SOI’t (CLRS 7.1)

* Running time? (not a formal proof)

* Best-case: most even possible split
* The partition routine produces two subproblems, each of size no more than n/2

T(n) = 2T (g) + 0(n) € O(nlogn)

* Average-case 15
\ A
* Much closer to the best case than to the worst case o s

| ; Ly] P A e

* Ex. Assume the Partition subroutine always TN AN
produces 9-to-1 proportional split log1o7 T2 oy e =0 7 =

\ / /\ /

In n logygse 2 ,/'/ TS ARFEE)
= T =i)= v 1 TGl Toeg Mt e R
T =T (10) e (10) a0 AT
) N I m- < en
T(n) € ©(nlogn)
| QRS we < cp
O(nlgn)
@) CS-3510: Design and Analysis of Algorithms | Summer 2022 31

QUiCk-SOI’t (CLRS 7.1)

* Running time? (not a formal proof)

* In practice:
* For not-worst-case inputs, quick-sort usually outperforms merge-sort.
* Commonly used in sorting libraries.

e Strategies to avoid @(n?) Partition(a, lo, hi):
choose a pivot element p € [lo, hi]

* Choosing the pivot element randomly
exchange A[p] with A[hi]

* Choosing the pivot as the median of three random elements P O A e
« Still, the worst case 1s possible, but highly unlikely for each i = lo : hi-1

if A[i] < A[hi]:
exchange A[i] with A[pivot index]
pivot_index ++
exchange A[hi] with A[pivot_ index]

return pivot index

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Merge-sort vs. Quick-sort

* Merge-sort: (bottom-up: main action during the combining the subproblem solutions)

ot 1 . Best Average Worst
* Divide: Divide the array into two halves Quicksort [ACn Togtn))| [6Cn Tog(m))

. . Mergesort QCn log(n))| |6(n log(n)) 0(n log(n))
* Congquer: Sort each half (by recursively executing merge-sort 'orrvac ualu 5 | | l

* Combine: Merge two halves to make a sorted array

* Quick-sort: (top-down: main action during the breaking the problem into subproblems)

» Divide: Partition (rearrange) the array into three parts:Ajeft, A[p], Aright, such that all elements of
Ajere <Alp] and all elements of Ayigne > A[p]. Also, a, = A[p] is known as the pivot element. Return
index p. As we divide into subproblems, we find the right position of the pivot element.

* Conquer: Sort the two sub-arrays Ajefe and Ayjgne by recursive calls to quick-sort on each half.

» Combine: Because the subarrays are already sorted, no additional work is required for combining the

results. The entire array is now sorted

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Merge-sort vs. Quick-sort

* Sorting Problem: Given an input of n elements, re-arrange the

elements 1n ascending (or descending) order.
Array Sorting Algorithms

Algorithm | Running time | Space Complexity > > > - - < > > >

Rl Lyemge Worst Worst Play All Insertion Selection Bubble Shell Merge Heap Quick Quick3
Quicksort [Cn Tog(n))] [6Cn log(n| [0ChA2)) i . § 3) N N _
Mergesort [aCn log(n))] [6Cn log(n)] [0Cn log(n))] > = = = = — _ — =
Timsort lacm| lecn 1og(n)| [0Cn 1og(n))] Random | —— = = = = == = =
Heapsort ~ [aCn log(n)] [6Cn log(n))| [o¢n log(n))) o]
Bubble Sort [ow)] > = E = = E = = =
Insertion Sort I [ow) - 0= = = = = = = =
Selection Sort (¢nA2)| (0(n"2)] 0(nA2) (o] =0 —— N ———— R
Tree Sort [GCn log(m)] [6Cn log(n)| [0CnA2)| [ocm)] p = = |F =& &F | F | = | &=
Shell Sort [a(n 1og(n))|[0Cn(log(n))A2)|(0Cn(log(n))A2)] (o] - ==§ ==§ ==§ E=§ E=§ =E§ Ezg ==E=
Bucket Sort [ACRRK) o(n+i)] 3 = = = = = = =
Radix Sort (k)] (k)] [0k 0(n+k) > =—— =— = = = = = =
Countingsort [N HEE EE | e = = == == E
Cubesort lacd| [8cn log(n| [oCn log(n)))) = = = = = — = =
https://www.bigocheatsheet.com/ https://www.toptal.com/developers/sorting-algorithms
http://www.cs3510.com/resources/ http://www.cs3510.com/resources/

34

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/
https://www.toptal.com/developers/sorting-algorithms
http://www.cs3510.com/resources/

D&C Example: Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
%{_J

Grade-school. ©®3) arithmetic operations. i
Cij = Zaikbkj
k=1

-Cn Cp ¢, -au a, - q, -bn b12 bln -
Cy €y Cy, g § a, a, a,, % b21 bzz b2n
_Cnl Cn2 cnn _ _anl anZ ann _ _bnl bn2 bnn i

S59 32 41 J0 20 .10 80 30 .50

31 36 .25 - 30 .60 .10| x 0 40 .10

45 31 42 S50 .10 .40 10 30 .40

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 35

D&C Example: Matrix Multiplication
Cl] /A‘ll /‘412 /Bll

(152 158 164 170] 0 1 2 3] [16 17 18 19]

504 526 548 570 |4 S5 6 7 y 20 21 22 23
856 894 932 970| (8 9 10 11 24 25 26 27
1208 1262 1316 1370 12 13 14 15] (28 29 30 31

N\

B21

0 11 [16 171 [2 3] [24 25] [152 158
Co = AxBu+ AoxBy = 12000 21l T le 70 %128 20| T |s04 526

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

36

D&C Example: Matrix Multiplication

To multiply two n-by-n matrices A and B:
* Divide: partition A and B into %n-by-%n blocks.
* Conquer: multiply 8 pairs of %4n-by-%n matrices, recursively.
* Combine: add appropriate products using 4 matrix additions.

8 matrix multiplications
n-by-n matrices (of Yon-by-%n matrices)

/\ | |

C = Ax B
¢, = (A11XB11) + (A12XB21)
C: G, il A, A, | B, B, C, = (A11XB12) + (A12XB22)
G Cp 4y Ay B,y By Col (=1 oy % Bu) ¥ (4 x By}
\/ ¢, = (A21XB12) + (A22XB22)
Yon-by-Y%n matrices I

4 matrix additions
(of Yon-by-%2n matrices)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

37

D&C Example: Matrix Multiplication

To multiply two n-by-n matrices A and B:
* Divide: partition A and B into %n-by-%n blocks.

* Conquer: multiply 8 pairs of %4n-by-%n matrices, recursively.
* Combine: add appropriate products using 4 matrix additions.

n-by-n matrices

/\

C = A x B

[Cll C'12] i [All AlZ] % [
C21 C22

A21 A22

Yan-by-Yn matrices

jam—y

\S)

—

RO RERRY:

[\S)

8 matrix multiplications
(of ¥on-by-"2n matrices)

SEeaeE

A11XB11) + (A12XB21)
A11XB12) + (A12XB22)
A21XB11) + (A22XB21)
A21XB12) + (A22XB22)

4 matrix additions
(of Yon-by-%2n matrices)

n

T(n) = a T(b) +f(n)

0(n'°8r %), ifa > b4 (case 1)
T(n) € { ©(n%logn),ifa = b® (case 2)
0(n), if a < b% (case 3)

Runtime?

Using master theorem:

T(n)= 8T(n/2) + O(n’)
recursive calls add, form ;:meatﬂces

= T(n)=0®">)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

38

D&C Example: Matrix Multiplication

 Fast matrix multiplication
e Strassen’s trick

Pf. Ci2

scalars
Al 1 A12

Cm] i l] o [Bn
C22 A21 A22 B21

Cii = Ps+ Ps— P+ Ps
Cin= P1+P;

C1 = P3+Ps

Cypn = Pi1+Ps—P3-—Py
=P+ P

BlZ

B

= A11 X (B12— B2) + (A11+ A12) X B2

=A11 XB12 +A12 XBzz. 4

22

|

Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications
(plus 11 additions and 7 subtractions).

P1 < Au X (Bi2—B2)
Py <= (A + A12) X B
P3 <= (A21 + A2) X B
P4 <— A X (B21 — B11)
Ps <= (A1 + Ap) X (Bu1 + By)
P <— (A12—A22) X (B21 + B2)
P7 <= (A1 — A21) X (Bi1 + B12)

|

7 scalar multiplications

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

39

D&C Example: Matrix Multiplication

e Fast matrix multiplication Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications

Strassen’s trick

To multiply n-by-n matrices:
Divide:

partition 4 and B into

12n-by-1/2n blocks.

Compute:
14 1/2n-by-12n matrices via
10 matrix additions.

Conquer:

multiply 7 pairs of 12n-by-12n
matrices, recursively.

Combine:

7 products into 4 terms using

8 matrix additions.

Pf. Ci2

(plus 11 additions and 7 subtractions).

scalars

1N
4, A4

of Cu] i l] o [
C’21 C22 A21 A22

Cii = Ps+P4—Pr+Ps
Cpo= Pi+P;
Cau = P3+ Py
Cn = Pi+Ps—P3—P;

=P+ P

B
B

=An X (B2 — B22) + (A11 + A12) X B

=A11 XB12 +A12 XBzz. 4

12

22

|

P1 < Au X (Bi2—B2)
Py <= (A + A12) X B
P3 <= (A21 + A2) X B
P4 <— A X (B21 — B11)
Ps <= (A1 + Ap) X (Bu1 + By)
P <— (A12—A22) X (B21 + B2)
P7 <= (A1 — A21) X (Bi1 + B12)

|

7 scalar multiplications

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

40

D&C Example: Matrix Multiplication

* Fast matrix multiplication g
* Strassen’s trick

To multiply n-by-n matrices:
* Divide:

partition 4 and B into

12n-by-1/2n blocks.

Using master theorem:

Assume n is power of 2.

. Compute: T(m)= 1T(n/2)+ ©O®°)
14 I/Zn—by— I/Zn matl‘ices Via recursive calls add, subtract
10 matrix additions.

e Conquer: T(n)=0®"2")=0n*"")

multiply 7 pairs of 12n-by-12n
matrices, recursively.
* Combine:
7 products into 4 terms using
8 matrix additions.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

41

D&C Example: Matrix Multiplication

+ History of arithmetic complexity of R I E e

matrix multiplication 1858
1969

1978
1979
1981
1982
1982
1986
1989
* Conjecture: O(n**¢) for any € > 0 2010
2011

2014

“grade school”
Strassen
Pan
Bini
Schonhage
Romani
Coppersmith-Winograd
Strassen
Coppersmith-Winograd
Strother
Williams

Le Gall
?2?

0@?)
O (n2808)
O (n27%)
O (n2780)
0 (n2522)
O (n2517)
O (n24%)
0 (n24719)
0 (n23755)
O (n23737)

O (n2372873)

O (n2372864)

0(n2+£)

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

42

galactic
algorithms

D&C Example: Closest Pair of Points

* Problem: Given n points in the plane, find a pair of points with the
smallest Euclidean distance between them.

* Applications . *
* Fundamental geometric primitive.

* Graphics, computer vision,
geographic information systems, .
molecular modeling, air traffic control. @

L

* Special case of nearest neighbor .

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

D&C Example: Closest Pair of Points

* Problem: Given n points in the plane, find a pair of points with the
smallest Euclidean distance between them.

* Brute force. o ¢
 Check all pairs with ®@(n?) distance calculations.

* 1D version. .
* Easy O(n log n) algorithm if points are on a line. @
[

* Non-degeneracy assumption. o
* No two points have the same x-coordinate. o

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

44

D&C Example: Closest Pair of Points

* Sorting solution?
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

45

D&C Example: Closest Pair of Points

* Sorting solution? X

* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

S

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

46

D&C Example: Closest Pair of Points

* Divide-and-Conquer
* Divide: draw vertical line L so that n /2 points on each side.
* Congquer: find closest pair in each side recursively.

* Combine: find closest pair with one point in each side.

* (How? seems like O(n2)?!) . I
e Return best of 3 solutions. . . . ° e
- S (VA
12 . e ’
o« . ° o

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

47

D&C Example: Closest Pair of Points

* Divide-and-Conquer

* Finding closest pair with one point 1n each side, assuming that distance < 0.
* Observation: suffices to consider only those points within o of line L.

L
® °
°
°
o °
®
°
‘ . /o
® °
12 R e 0=min(12,21)
0/. ° ®
® ® ®
°
— 0

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

48

D&C Example: Closest Pair of Points

* Divide-and-Conquer
* Finding closest pair with one point 1n each side, assuming that distance < 0.
* Observation: suffices to consider only those points within o of line L.

* Sort points 1n 2 o-strip ° . o . o
by their y-coordinate. 0 @ o
e ©®
* Check distances of only | o|® / 21
those points within 7 ° o * [T
positions 1n sorted list! - ° 8 = min(12, 21)
. © . Y T
o/. ®
(] () e ®
@ o
—— 0

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

49

D&C Example: Closest Pair of Points

* Divide-and-Conquer
* Finding closest pair with one point in each side, assuming that distance < 9.
* Let s, be the point in the 2 -strip, with the i smallest y-coordinate. L
* Claim: If |[j — i[> 7, then the distance between s, and s, 1s at least o.

* Proof: °
* Consider the 26-by-0 rectangle R in strip whose min y-coordinate . i
is y-coordinate of s; 'R | Hozs
« Distance between s; and any point s; above R is > & - @
: ! B ERTE
* Subdivide R into 8 squares. diameter is | e |- . '

§/V2 < Si
* Atmost 1 point per square.

e At most 7 other points can be in R. =

20

Y

D&C Example: Closest Pair of Points

* Divide-and-Conquer

Divide:
draw vertical line L so

CLOSEST-PAIR(p1, p2, ..., Pn)

: . Compute vertical line L such that half the points O(n)
that n /2 points on each side.) . . £ T
are on each side of the line.
Condauer: T | 01 <= CLOSEST-PAIR(points in left half). T(n/2)
find CI.OSGS'[pair 1n cach side 02 <= CLOSEST-PAIR(points in right half). T(n/2)
recursively.
0 < min{d:,d }.
Combine: Delete all points further than 0 from line L. O(n)
find closest pair with one point R .
in each side. Sort remaining points by y-coordinate. O(n log n)
Scan points in y-order and compare distance between
Return best of 3 solutions. each point and next 7 neighbors. If any of these O(n)
distances is less than 8, update 9.
RETURN 0.
@) CS-3510: Design and Analysis of Algorithms | Summer 2022 51

D&C Example: Closest Pair of Points

* Divide-and-Conquer

* Runtime?
T(n) < 2T(n/2) + O(n logn)
= T(n) = O(n log2 n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip
from scratch each time. Each
recursive returns two lists: all

points sorted by y coordinate,

and all points sorted by x coordinate.
Sort by merging two pre-sorted lists.

CLOSEST-PAIR(p1, p2, ..., Pn)

Compute vertical line L such that half the points
are on each side of the line.

01 <= CLOSEST-PAIR(points in left half).

02 <= CLOSEST-PAIR(points in right half).

0 < min{d;,0;}.

Delete all points further than 8 from line L.

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these
distances is less than 8, update 0.

RETURN 0.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

O(n)

T(n/2)

T(n/2)

O(n)

O(n log n)

O(n)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

52

References

* The lecture slides are heavily based on the suggested textbooks and the corresponding published
lecture notes:

 CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third
Edition, MIT Press, 2009.

» KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

* DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher
Education., 2008.

 Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

53

http://www.cs3510.com/policies/

