
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Divide-and-Conquer I

Roadmap

2CS-3510: Design and Analysis of Algorithms | Summer 2022

We a
re h

ere
!

Previous Lecture (1/3)
• Introduction, course logistic
• Course website
• Lecture will be streamed / recorded using Zoom and will be accessible on

Canvas
• Course content

• Poll result

• Algorithms; Design and Analysis
• Designing, describing, pseudocode
• Correctness
• Time and space complexity

CS-3510: Design and Analysis of Algorithms | Summer 2022 3

Previous Lecture (2/3)
• Review of running time and space complexity
• Model of computation: random-access machine (RAM)

• Single processor, no concurrency, supports common instructions
• Runtime: number of steps taken by an algorithm, given the input size

• Best-case, Worst-case, Average-case
• Time complexity:

• Providing a number (function) T(n), where is the input size
• T(n): max amount time taken on any input of size n ≊ worst-case runtime
• We mostly care about the rate of growth, i.e., how the runtime is scaling up w.r.t. the input

size
• Asymptotic analysis

• Ω, Ο, and Θ notations: lower bound, upper bound, tight bound
• Time complexity à rate of growth of the worst-case runtime à upper bound à Big-O
• 𝑇 𝑛 ∈ Ο 𝑔 𝑛

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Previous Lecture (3/3)
• Search problem
• Linear search, 𝑂(𝑛)
• Binary search 𝑂(log 𝑛)

• Recursive algorithm
• Divide-and-Conquer paradigm

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

A Note about Recursive Algorithms
• In general, recursive algorithms can be used in various setups:
• Backtracking

• Ex. Enumerating all subsets of a given set or array
• Usually (not always!), in these cases we can expect an exponential runtime Ο 𝑎! , where
𝑎 is the number of possible options to choose at each step which is equal to the number
branches after each node in the recursion tree.

• Divide-and-Conquer (D&C)

• Dynamic programming (DP)

• Traversing a graph or tree using the depth-first search (DFS) approach

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Divide-and-Conquer (D&C)
• Main idea:
• Break the problem into smaller pieces to solve them easier. Then, combine the

solution of these sub-problems to form the overall solution.

• Main steps
• Divide up problems into several subproblems (of the same type)
• Solve (conquer) each subproblem (usually recursively)
• Combine the solutions

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

Divide-and-Conquer (D&C)
• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

Divide-and-Conquer (D&C)
• Let’s start with some examples!
• Binary-search (previous lecture)

• Merge-sort (this lecture)

• Quick-sort

• Matrix multiplication

• Closest pair of points

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Search Algorithm

Sorting Algorithm

Sorting Algorithm

D&C Example: Binary-search (revisit)
• Search Problem: Given a sorted array, including integer numbers, and a target

number, design an algorithm which returns True if the target number is in the
given array, and False otherwise.

• Binary-search:
• At each step compare the mid element with the target:

• if mid == target: return True
• if mid < target: discard the left sub-array and continue to search the right sub-array
• if mid > target: discard the right sub-array and continue to search the left sub-array

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

D&C Example: Binary-search (revisit)
• Binary-search:
• At each step compare the mid element

of with the target:
• if mid == target: return True
• if mid < target:

discard the left sub-array and continue to search the right sub-array
• if mid > target:

discard the right sub-array and continue to search the left sub-array

• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem (this lecture!)

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

D&C Example: Binary-search (revisit)
• Binary-search:
• At each step, compare the

mid element of with the target:
• if mid == target:

return True

• if mid < target:
discard the left sub-array and
continue to search the right sub-array

• if mid > target:
discard the right sub-array and
continue to search the left sub-array

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

O(1)

O(1)

O(1)

O(1)

O(logn)

The recurrence: T n = '
1 , 𝑛 = 1
1 + 𝑇(!

"
), 𝑛 > 1

𝑇 n = 1 + 𝑇
𝑛
2 = 1 + 1 + 𝑇

𝑛
4 = 1 + 1 + 1 + 𝑇

𝑛
8

= 1 + 1 + …+ 1
#$%&'(!)

∈ 𝑂(log 𝑛)

D&C Example: Merge-sort
• Sorting Problem: Given an input of n elements, re-arrange the

elements in ascending (or descending) order.

• Applications:
• Direct: Sort a list of numbers, names, etc.
• Indirect: Sorting can make other tasks easier.

• Ex. Given an array of n distinct integers, find three that sum to 0.
- Brute force: Ο 𝑛"
- Sort the array first, then run two-sum algorithm on the sorted array: Ο 𝑛#

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

D&C Example: Merge-sort
• Sorting Problem: Given an input of n elements, re-arrange the

elements in ascending (or descending) order.

• Algorithms:

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Running time

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

D&C Example: Merge-sort
• Sorting Problem: Given an input of n elements, re-arrange the

elements in ascending (or descending) order.

• Algorithms:

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Running time

Ex. of Brute force: Θ 𝑛"

Ex. of D&C: Θ 𝑛 log 𝑛

FWIW, Python built-in sort function

https://www.bigocheatsheet.com/
http://www.cs3510.com/resources/

Extra Slide: Insertion-sort
• Insertion-sort and Bubble-sort are two well-known examples of brute-

force sorting algorithm
• Insertion sort:
• Works the way people sort a hand of playing cards.
• We start with an empty hand
• The cards face down on the table.
• We then remove one card at a time from the table and insert it into the correct

position.
• To find the correct position for a card, we compare it with each of the cards

already in the hand, from right to left

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Extra Slide: Insertion-sort
• Insertion-sort and Bubble-sort are two well-known examples of brute-

force sorting algorithm
• Insertion sort:
• Ex. Input: A = [5, 2, 4, 6, 1, 3]

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Extra Slide: Insertion-sort
• Insertion-sort and Bubble-sort are two well-known examples of brute-

force sorting algorithm
• Insertion sort:

• Demo code

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Time complexity: O 𝑛"
Space complexity: O 1

D&C Example: Merge-sort
• Now, let’s back to our D&C business and see how merge-sort works.

Then, we can compare its performance with a brute force sorting
algorithm like insertion sort.
• From a few slides ago:

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.

D&C Example: Merge-sort

• Merge-sort:
• Divide: Divide the array into two halves
• Conquer: Sort each half (by recursively executing merge-sort on each half)
• Combine: Merge two halves to make a sorted array.

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

• Main steps
• Divide up problems into several subproblems (of the same type).
• Solve (conquer) each subproblem (usually recursively).
• Combine the solutions.

• Most common framework
• Divide the problem of size 𝑛 into two subproblems of size 𝑛/2 in linear time
• Solve (conquer) the two subproblems recursively.
• Combine two solutions into overall solution in linear time.

D&C Example: Merge-sort
• Ex. A = [39, 28, 40, 2, 8, 79, 11]

.

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

39 28 40 2 8 79 11

2 8 11 28 39 40 79

Merge-sort

• Divide:
Divide the array into two halves

• Conquer:
Sort each half (by recursively
executing merge-sort on each half)

• Combine:
Merge two halves to make a sorted array

D&C Example: Merge-sort
• Ex. A = [39, 28, 40, 2, 8, 79, 11]

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

39 28 40 2 8 79 11

2 8 11 28 39 40 79

39 28 40 2 8 79 11

Divide: Divide the array
into two halves

2 28 39 40 8 11 79
Combine: Merge two
halves to make a sorted
array.

Merge-sort Merge-sort Conquer: Sort each half
(by recursively executing
merge-sort on each half)

D&C Example: Merge-sort

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

39 28 40 2 8 79 11

2 8 11 28 39 40 79

39 28 40 2 8 79 11

2 28 39 40 8 11 79

39 28 40 2 8 79 11

39 40 228 8 79 11

28 39 2 40 8 79 11

Divide: Divide the array
into two halves

Combine: Merge two
halves to make a sorted
array.

Conquer: Sort each half
(by recursively executing
merge-sort on each half)

D&C Example: Merge-sort

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

39 28 40 2 8 79 11

2 8 11 28 39 40 79

39 28 40 2 8 79 11

2 28 39 40 8 11 79

39 28 40 2 8 79 11

39 40 228 8 79 11

28 39 2 40 8 79 11

Demo code

D&C Example: Merge-sort
• Merge-sort:
• Divide: Divide the array into two

halves
• Conquer: Sort each half (by

recursively executing merge-sort on
each half)
• Combine: Merge two halves to

make a sorted array.

• Time complexity?

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

D&C Example: Merge-sort
• Merge-sort:

• Divide: Divide the array into two halves
• Conquer: Sort each half (by recursively executing merge-sort on each half)
• Combine: Merge two halves to make a sorted array.

• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

D&C Example: Merge-sort
• Recursion tree

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

D&C Example: Merge-sort
• Recurrence
• T (n) = max number of compares to merge-sort a list of length n.

• Solution: T(n) is O(nlog2n)

• Proof by induction

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

D&C Example: Merge-sort
• Recurrence
• Simplifying assumption: n is power of 2. Then,

• Proof by induction:
• Base case: when n = 1, T(1) = 0 = n log2 n.

• Inductive hypothesis: assume T(n) = n log2 n.

• We need to show that T(2n) = 2n log2 (2n).

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

D&C Example: Merge-sort
• Recurrence
• Simplifying assumption: n is power of 2. Then,

• Proof by induction:
• Base case: when n = 1, T(1) = 0 = n log2 n.

• Inductive hypothesis: assume T(n) = n log2 n.

• We need to show that T(2n) = 2n log2 (2n).

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).
• a ≥ 1 is the number of subproblems, also known as “branching factor”
• b ≥ 2 is the factor by which the subproblem size decreases.
• f (n) ≥ 0 is the work to divide and combine subproblems.

• f (n) usually takes polynomial time, i.e., f (n) is Θ(𝑛!), where 𝑑 ≥ 0

Note:
• 𝑎! = number of subproblems at level i
• 𝑘 = log" 𝑛 levels, i.e., the depth of the recursion tree
• #
"*

= size of subproblem at level i

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).

• Three cases can happen…

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Master Theorem
• Three cases can happen…
• But before talking about that, let’s have a quick review about “Geometric Series”

• Geometric series: sum of finite or infinite number of terms that have a constant ratio between
each two consecutive terms.

• Can be written as 𝑎 + 𝑎𝑟 + 𝑎𝑟# + 𝑎𝑟" +⋯, where 𝑎 is the coefficient of each term and 𝑟 is
the common ratio between adjacent terms.

• It can be shown that:

o If 𝑟 ≠ 1, 1 + 𝑟 + 𝑟# + 𝑟" +⋯+ 𝑟$%& = &%'!

&%'

o If 𝑟 = 1, 1 + 𝑟 + 𝑟# + 𝑟" +⋯+ 𝑟$%& = 𝑘

o If 𝑟 < 1, 1 + 𝑟 + 𝑟# + 𝑟" +⋯ = &
&%'

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

Master Theorem
• Case 1: Total computational cost is dominated by cost of leaves.
• Example:
Let T(n) = 3T(n/2)+n with T(1)=1:
Then, T(n)= Θ(𝑛()*" ")

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

Master Theorem
• Case 2: Total computational cost is evenly distributed among levels
• Example:
Let T(n) = 2T(n/2)+n with T(1)=1:
Then, T(n)= Θ(𝑛 log𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

Master Theorem
• Case 3: Total computational cost is dominated by cost of root
• Example:
Let T(n) = 3T(n/4)+n5 with T(1)=1:
Then, T(n)= Θ(𝑛+)

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏
+ 𝑓(𝑛)

where T(0) = 0 and T(1) = Θ(1).
• a ≥ 1 is the number of subproblems, also known as “branching factor”
• b ≥ 2 is the factor by which the subproblem size decreases.
• f (n) ≥ 0 is the work to divide and combine subproblems.
• If f (n) is Θ(𝑛!), where 𝑑 ≥ 0:

𝑇 𝑛 =
Θ 𝑛$%&+ ' , if 𝑎 > 𝑏((case 1)
Θ 𝑛(log 𝑛 , if 𝑎 = 𝑏((case 2)
Θ 𝑛(, if 𝑎 < 𝑏((case 3)

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

Master Theorem
• Goal. Recipe for solving common divide-and-conquer recurrences,

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 =
Θ 𝑛$%&+ ' , if 𝑎 > 𝑏((case 1)
Θ 𝑛(log 𝑛 , if 𝑎 = 𝑏((case 2)
Θ 𝑛(, if 𝑎 < 𝑏((case 3)

• Limitation. Master theorem cannot be used if
• 𝑇 𝑛 is not monotone, e.g., 𝑇 𝑛 = sin 𝑛
• 𝑓 𝑛 is not polynomial, e.g., 𝑇 𝑛 = 2 𝑇 #

)
+ 2#

• 𝑏 cannot be expressed as a constant, e.g., 𝑇 𝑛 = 𝑎 𝑇 𝑛 + 𝑓(𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Master Theorem
• Now, we can apply master theorem to binary-search and merge-sort:

• Binary search:
• Recurrence: T n = T !

#
+ 1

• Therefore, 𝑎 = 1, b = 2, and 𝑓 𝑛 = 1 = Θ 𝑛, , i.e., 𝑑 = 0
• 𝑎 = 𝑏- ⟹ T n ∈ Θ 𝑛, log 𝑛 = Θ log 𝑛

• Merge sort:
• Recurrence: T n = 2T !

#
+ 𝑛

• Therefore, 𝑎 = 2, b = 2, and 𝑓 𝑛 = 𝑛 = Θ 𝑛& , i.e., 𝑑 = 1
• 𝑎 = 𝑏- ⟹ T n ∈ Θ 𝑛& log 𝑛 = Θ 𝑛 log 𝑛

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

𝑇 𝑛 = 𝑎 𝑇
𝑛
𝑏 + 𝑓 𝑛

𝑇 𝑛 ∈
Θ 𝑛!"#! $, if 𝑎 > 𝑏% (case 1)
Θ 𝑛% log 𝑛 , if 𝑎 = 𝑏% (case 2)
Θ 𝑛% , if 𝑎 < 𝑏% (case 3)

References
• The lecture slides are heavily based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher

Education., 2008.
• Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley.
• Slides by Erik D. Demaine and Charles E. Leiserson. Copyright © 2001-5

40CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

