
CS-3510
Design and Analysis of

Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Welcome!
• Course: Design and Analysis of Algorithms
• What?
• Algorithms
• Algorithmic paradigms; design and correctness
• Performance analysis

2CS-3510: Design and Analysis of Algorithms | Summer 2022

Welcome!
• Why?
• Fundamental to all areas of computer science

• Operating systems, Networks and distributed systems, Machine learning, Data science,
Numerical computation, Cryptography, Computational biology, etc.

• Inseparable part of every technical interview | We talk about this more!
• Internship, Part-time, Full-time
• Software engineer (SWE), Machine learning engineer (MLE), Product manager (PM),

Infrastructure, Research scientist, Data scientist, etc.
• Large tech companies ~ small start-ups

• Useful and Fun!
• Problem solving skills
• Competitive programming, Hackathons, etc.

3CS-3510: Design and Analysis of Algorithms | Summer 2022

Welcome!
• When?
• Days: Tuesday Thursday
• Time: 3:30 - 5:40 pm EST

• Where?
• Klaus Advanced Computing 2443

• Prerequisites?
• (Some) discrete math and data structure knowledge
1. CS 2050 or CS 2051 or MATH 2106
2. CS 1332 or MATH 3012 or MATH 3022

4CS-3510: Design and Analysis of Algorithms | Summer 2022

Logistics
• How? | Course Format
• In-person lectures
• In-person exams

• Lectures will NOT be recorded!
• CoC does not provide recording option.
• Remote/virtual options are not available.

• How to access the course material?
• Course website: http://www.cs3510.com/

5CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule
• Notes, slides, demo codes
• Textbooks
• Assignments
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

6CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule http://www.cs3510.com/lectures/
• Notes, slides, demo codes
• Textbooks http://www.cs3510.com/policies/#2-textbooks/
• Assignments http://www.cs3510.com/assignments/
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

7CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/
http://www.cs3510.com/lectures/
http://www.cs3510.com/policies/
http://www.cs3510.com/assignments/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule
• Notes, slides, demo codes
• Textbooks
• Assignments
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

8CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule
• Notes, slides, demo codes
• Textbooks
• Assignments
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

9CS-3510: Design and Analysis of Algorithms | Summer 2022

- 6-7 assignments
- Every Friday, due the next Friday 11:59 pm EST
- First assignment will be released this Friday!
- Solutions must be typed

- LaTeX is highly recommended
- Tex template file will be provided
- A cloud-based LaTeX editor: OverLeaf (free for GT)

http://www.cs3510.com/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule
• Notes, slides, demo codes
• Textbooks
• Assignments
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

10CS-3510: Design and Analysis of Algorithms | Summer 2022

- 6 total late days for the entire semester with no penalty
- At most 2 late days can be used for one assignment
- The late days are counted by day; a new late day starts at

12:00 am EST
- Submissions beyond the total allowed late days or 2 days

after the deadline will get 0 credit.
- Regrade request

- Within one week from the day grades published
- Directly email to the corresponding TA

http://www.cs3510.com/

Logistics
• Course Website: http://www.cs3510.com/

• Course materials
• General schedule
• Notes, slides, demo codes
• Textbooks
• Assignments
• Exam dates

• Policies
• Grading
• Homework assignments
• Late policies, regrade policies
• Collaboration and honor code

• Check regularly for announcements and course materials.

11CS-3510: Design and Analysis of Algorithms | Summer 2022

- Acknowledge the code of academic integrity
- Collaboration is allowed but

- You must write up and submit your own work
- You must acknowledge (explicitly mention) your

collaborators
- Proper citation is required for any material used outside

the lectures.

http://www.cs3510.com/

Logistics
•So, in short:

•All course materials: http://www.cs3510.com/
(lecture notes, assignments, solutions, policies, etc.)

•Assignment submission: Canvas

12CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/

Logistics
• Communications:

• Discussions: Piazza
• Join today!
• Class Access Code: cs3510a--summer2022

• Email and Office hours
• Office hours start from the next week
• Information in the course website
• Locations will be announced; most probably online Zoom meeting

13CS-3510: Design and Analysis of Algorithms | Summer 2022

Course Plan
• Roadmap

14CS-3510: Design and Analysis of Algorithms | Summer 2022

We a
re

here
!

Course Content
• Plan1: More theoretical
• More mathematical proof
• More classic textbook problems in examples and assignments

• Plan 2: More practical
• Technical interview problems in examples and assignments

• Internship/fulltime
• More demo codes

15CS-3510: Design and Analysis of Algorithms | Summer 2022

CS-3510: Design and Analysis of Algorithms | Summer 2022

Course Content

• Textbook: Graph Traversal Problem
• Breadth-First/Depth-First Search
• Design an algorithm to verify if there is a

path between two nodes in a given graph.

• Interview: Grid Problem
• Given an m-by-n 2D binary matrix in

which 0 represent water and 1 represent
land, design an algorithm computing the
number islands. An island includes one or
more horizontally or vertically cells
surrounded by water.

16

• An example:

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

1 1 0 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

Course Content
• Plan1: More theoretical
• More mathematical proof
• More classic textbook problems in examples and assignments

• Plan 2: More practical
• Technical interview problems in examples and assignments
• More demo codes

• Mentimeter
• Use your smart phone or laptop to vote:

• https://www.menti.com/
• Code: 37 01 46

• We will use Mentimeter for in-class quizzes, as well!

17CS-3510: Design and Analysis of Algorithms | Summer 2022

https://www.menti.com/135nu9y5kc
https://www.menti.com/

Algorithm Analysis
• Algorithm (Meriam-Webster Dictionary):
• “A procedure for solving a mathematical problem in a finite number of steps

that frequently involves repetition of an operation”
• “Broadly : a step-by-step procedure for solving a problem or accomplishing

some end.”
• Algorithm (CLRS):
• “Informally, an algorithm is any well-defined computational procedure that

takes some value, or set of values, as input and produces some value, or set of
values, as output. An algorithm is thus a sequence of computational steps that
transform the input into the output.”
• “An algorithm is said to be correct if, for every input instance, it halts with the

correct output. We say that a correct algorithm solves the given computational
problem.”

18CS-3510: Design and Analysis of Algorithms | Summer 2022

Algorithm Analysis
• Correctness
• On every valid input, the algorithm produces the output that satisfies the

required input/output relationship

• Proof of Correctness
• Induction
• Contradiction
• Counter-example
• …

• But we are also interested beyond correctness!
• The resources that an algorithm uses: time and space

19CS-3510: Design and Analysis of Algorithms | Summer 2022

Algorithm Analysis
• Analysis of Time and Space
• Space: main memory used by an algorithm
• Time: the number of CPU cycles used
• We commonly are most interested in time (speed)
• Space-time trade off

• Dynamic programming
• Here, we will review the time complexity, but the same discussion holds for

space complexity.

• Given the size of the input, how many computation steps does the algorithm
take?
• Running time
• Time complexity

20CS-3510: Design and Analysis of Algorithms | Summer 2022

Running time (review)

• Model of Computation:
• Generic one-processor, random-access machine (RAM)
• No concurrency: instructions are executed one after another
• Common atomic instructions: take constant amount of time

• Arithmetic (e.g., add, subtract, multiply, divide, remainder, floor, ceiling)
• Data movement (load, store, copy)
• Control (conditional and unconditional branch, subroutine call and return)

• Loops are not simple operations
• Depends on the size of the input

• Note call a subroutine takes constant amount of time but the subroutine
runtime may not be constant.

• Runtime: number of steps taken by an algorithm, given the input size

21CS-3510: Design and Analysis of Algorithms | Summer 2022

Running time (review)

• Best-case: the minimum number of steps taken on any instance of size n
• Example: sorting an array when the input array is already sorted

• Worse-case: the maximum number of steps taken on any instance of size n
• Example: sorting an array when the input array is reverse sorted

• Average-case: the average number of steps taken on any instance of size n

• Time complexity:
• The time complexity of an algorithms associates a number T(n) defined as the maximum

amount of time, i.e., the worst case, taken on any input of size n.

22CS-3510: Design and Analysis of Algorithms | Summer 2022

Time Complexity (review)

• Time complexity:
• The time complexity of an algorithms associates a number T(n) defined as the

maximum amount of time, i.e., the worst case, taken on any input of size n.

• Mathematical definition:
• 𝑇 𝑛 : ℕ → ℝ
• T(n) represents a mapping from input size n, which is a non-negative integer, to a real number

showing the runtime in the worst-case scenario for any input of size n.

• Problem/Limitation:
• The exact analysis is often hard due to implementation details, etc.
• How the runtime is scaling-up if the input size increases? Rate of growth

• Better approach: asymptotic analysis

23CS-3510: Design and Analysis of Algorithms | Summer 2022

Time Complexity (review)

• Asymptotic Order of Growth
• It is easier to talk about the lower bound and upper bound of the running time.

• To practically deal with time complexity analysis, we use asymptotic notations.

• The asymptotic growth of a function (in this case T(n)) is specified using Θ, Ο,
and Ω notations.

• Asymptotic means for “very large” input size, as n grows without bound or
“asymptotically”.

24CS-3510: Design and Analysis of Algorithms | Summer 2022

Time Complexity (review)

• Asymptotic Order of Growth
• In general, the asymptotic notations define bounds on the growth of a function.

Informally, a function 𝑓 𝑛 is:

• Ω(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic lower bound for 𝑓 𝑛

• Ο(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic upper bound for 𝑓 𝑛

• Θ(𝑔 𝑛) if 𝑔 𝑛 is an asymptotic tight bound for 𝑓 𝑛

25CS-3510: Design and Analysis of Algorithms | Summer 2022

Time Complexity (review)

• Asymptotic Order of Growth (Formal definition):
• Big Omega (lower bound):

f(n) is Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

• Big O (upper bound):
f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• Big Theta (tight bound):
f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
• Note: f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n))

26CS-3510: Design and Analysis of Algorithms | Summer 2022

Time Complexity (review)

27CS-3510: Design and Analysis of Algorithms | Summer 2022

• Ex. Let 𝑓 𝑛 = 35𝑛! + 10𝑛 + 5. Then, we can say:
- 𝑓 𝑛 is Ο 𝑛! , Ο 𝑛" , Ω 𝑛 , Ω 𝑛! , and Θ 𝑛! .
- 𝑓 𝑛 is not Ο 𝑛 , Ο 𝑛log𝑛 , Ω 𝑛" , Θ 𝑛 , Θ 𝑛"

𝑓 𝑛 is Ω(𝑔 𝑛)
𝑔 𝑛 is a lower bound of 𝑓 𝑛

𝑓 𝑛 is Ο(𝑔 𝑛)
𝑔 𝑛 is an upper bound of 𝑓 𝑛

𝑓 𝑛 is Θ(𝑔 𝑛)
𝑔 𝑛 is a tight bound of 𝑓 𝑛

Time Complexity (review)

28CS-3510: Design and Analysis of Algorithms | Summer 2022

• Ex. Let 𝑓 𝑛 = 35𝑛! + 10𝑛 + 5. Then, we can say:
- 𝑓 𝑛 ∈ Ο 𝑛! , Ο 𝑛" , Ω 𝑛 , Ω 𝑛! , and Θ 𝑛! .
- 𝑓 𝑛 ∉ Ο 𝑛 , Ο 𝑛log𝑛 , Ω 𝑛" , Θ 𝑛 , Θ 𝑛" .

• 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means 𝑓 𝑛 is in the set of functions bounded by 𝑔 𝑛 from above

𝑓 𝑛 is Ω(𝑔 𝑛)
𝑔 𝑛 is a lower bound of 𝑓 𝑛

𝑓 𝑛 is Ο(𝑔 𝑛)
𝑔 𝑛 is an upper bound of 𝑓 𝑛

𝑓 𝑛 is Θ(𝑔 𝑛)
𝑔 𝑛 is a tight bound of 𝑓 𝑛

Time Complexity (review)

29CS-3510: Design and Analysis of Algorithms | Summer 2022

• 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means 𝑓 𝑛 is in the set of functions bounded by 𝑔 𝑛 from above

• Slight abuse of asymptotic notations: 𝑓 𝑛 = Ο 𝑔 𝑛
• Often used by computer scientist
• Problem: equality is not transitive. (Ex. Let 𝑔! 𝑛 = 7𝑛" and 𝑔# 𝑛 = 2𝑛". We have 𝑔! 𝑛 =
Ο 𝑛" and 𝑔# 𝑛 = Ο 𝑛" , but we cannot conclude 𝑔! 𝑛 = 𝑔# 𝑛)

𝑓 𝑛 is Ω(𝑔 𝑛)
𝑔 𝑛 is a lower bound of 𝑓 𝑛

𝑓 𝑛 is Ο(𝑔 𝑛)
𝑔 𝑛 is an upper bound of 𝑓 𝑛

𝑓 𝑛 is Θ(𝑔 𝑛)
𝑔 𝑛 is a tight bound of 𝑓 𝑛

Time Complexity (review)

30CS-3510: Design and Analysis of Algorithms | Summer 2022

• The time complexity of an algorithms associates a number T(n) defined as the
maximum amount of time, i.e., the worst case, taken on any input of size n.

• Big-O: 𝑇 𝑛 ∈ Ο 𝑔 𝑛

𝑓 𝑛 is Ω(𝑔 𝑛)
𝑔 𝑛 is a lower bound of 𝑓 𝑛

𝑓 𝑛 ∈ Ω 𝑔 𝑛

𝑓 𝑛 is Ο(𝑔 𝑛)
𝑔 𝑛 is an upper bound of 𝑓 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛

𝑓 𝑛 is Θ(𝑔 𝑛)
𝑔 𝑛 is a tight bound of 𝑓 𝑛

𝑓 𝑛 ∈ Θ 𝑔 𝑛

Time Complexity (review)

• Big O Notation Properties

• So, we can ignore the lower terms and constants:

• Ex. f = 2n3 + 4n2 -5n + 1∈ O(n3)
• Ex. f = 4n5 ∈ O(n5)

31CS-3510: Design and Analysis of Algorithms | Summer 2022

Reflexivity f is O(f)
Constants If f is O(g) and c > 0, then cf is O(g)
Products If f1 is O(g1) and f2 is O(g2), then f1 f2 is O(g1 g2)
Sums
(Additivity)

If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2})
Ex. If f1 ∈ O(n2) and f2 ∈ O(n4). Then, f1 + f2 ∈ O(n4)

Transitivity If f is O(g) and g is O(h), then f is O(h)

Time Complexity (review)

• Asymptotic Bounds for Some Common Functions

• Demo code

32CS-3510: Design and Analysis of Algorithms | Summer 2022

Polynomials f(n) = a0 + a1n + ... + adnd is Θ(nd) and thus, O(nd) if ad>0.

Logarithms loga n is Θ(logb n) for every a>1 and b>1.
Note: O(loga n) = O(logb n) (Recall logb n = logb a × loga n)

Logarithms vs polynomials loga n is O(nd) for every a>1 and d>0.
Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials nd is O(rn) for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.

Common Running Times
(1) Constant time: Running time is Ο 1
• Bounded by a constant which does not depend on input size 𝑛.

• Examples
• Arithmetic/logic operation
• Declare/initialize a variable
• Access an element in an array
• Follow a link in a linked list
• Conditional branch

33CS-3510: Design and Analysis of Algorithms | Summer 2022

Common Running Times
(2) Linear time: Running time is Ο 𝑛
• The runtime scales up linearly with respect to the input size 𝑛.

• Examples
• Finding the minimum and maximum elements in an array or linked list
• Searching for an element in an unsorted array
• Combining two sorted list

34CS-3510: Design and Analysis of Algorithms | Summer 2022

Common Running Times
(3) Logarithmic time: Running time is Ο log 𝑛
• The runtime scales up logarithmically with respect to the input size 𝑛.

• Examples
• Binary Search in a sorted array.
• Finding the target sum in a sorted array.

(4) Ο nlog 𝑛 :
• Sorting elements of an array in ascending order using Merge-Sort algorithm

35CS-3510: Design and Analysis of Algorithms | Summer 2022

Common Running Times
(5) Ο 𝑛)
• Algorithm to solve the closest pair of points problem. Given a list of n points

in the plane (x1, y1), ..., (xn, yn), find the pair that is closest to each other.

(6) Ο 𝑛*
• Given an array of n distinct integers, find three that sum to 0.

(7) Polynomial time: Running time is Ο 𝑛+ for some constant 𝑘 > 0.
• Independent set of size k. Given a graph, find k nodes such that no two are

joined by an edge.
• In general, an algorithm is considered efficient if it has polynomial running

time.

36CS-3510: Design and Analysis of Algorithms | Summer 2022

Common Running Times
(8) Exponential time: Running time is Ο 2,! for some constant 𝑘 > 0.
• Ο 2- : Enumerating all subsets of a set of 𝑛 elements.

37CS-3510: Design and Analysis of Algorithms | Summer 2022

References
• The lecture slides are heavily based on the suggested textbooks and the

corresponding published lecture notes:

• CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

• KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

• DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher
Education., 2008.

38CS-3510: Design and Analysis of Algorithms | Summer 2022

http://www.cs3510.com/policies/

CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Some Examples

Searching a Sorted Array
• Problem
• Given a sorted array, including integer numbers, and a target number, design

an algorithm which returns True if the target number is in the given array, and
False otherwise.

- Input: A = [a1, a2, …, aN] s.t. a1< a2< …< aN, target = k
- Output: True if k ∈A, False if k ∉A

• Example
- Input: A = [-1, 0, 2, 5, 8, 11], target = 8
- Output: True

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Searching a Sorted Array
• Approach 1:
• Brute force search: checking every

element one-by-one
• In this case: Linear Search

▼
• A = [-1, 0, 2, 5, 8, 11], target = 8

▼
• A = [-1, 0, 2, 5, 8, 11], target = 8

▼
• A = [-1, 0, 2, 5, 8, 11], target = 8

▼
• A = [-1, 0, 2, 5, 8, 11], target = 8

▼
• A = [-1, 0, 2, 5, 8, 11], target = 8

• A = [-1, 0, 2, 5, 8, 11], target = 8
Return True!

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Searching a Sorted Array
• Approach 1:
• Brute force search: checking every element one-by-one
• In this case: Linear Search
• Time complexity: O(n)
• Space complexity: O(1)

• What if n=1,000,000 and k == an?
• Can we do better?

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

Searching a Sorted Array
• Binary Search
• Assume the value of the mid element is less than the target, do we still need

search the left half?
• At each iteration compare the mid element of with the target:

• if mid == target: return True
• if mid < target: discard the left sub-array and continue to search the right sub-array
• if mid > target: discard the right sub-array and continue to search the left sub-array

• Naturally can be implemented as a recursive algorithm.
• Recursion

• Function call itself on a smaller domain
• One or more base cases to stop the recursion

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Searching a Sorted Array
• Approach 2: Binary Search

lo hi
• A = [-1, 0, 2, 5, 8, 11], target = 8

lo m hi
• A = [-1, 0, 2, 5, 8, 11], target = 8
2 < 8 à search right sub-array

lo hi
• A = [-1, 0, 2, 5, 8, 11], target = 8

lo m hi
• A = [-1, 0, 2, 5, 8, 11], target = 8

• Return True!

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

Searching a Sorted Array
• Binary Search

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Searching a Sorted Array
• Binary Search
• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Searching a Sorted Array
• Binary Search
• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

O(1)

O(1)

O(1)

O(1)

O(logn)

Searching a Sorted Array
• Binary Search
• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

• 𝑚𝑖𝑑 is always placed at 1 + 𝑛/2
• if 𝑘 < 𝑎!"# we have 𝑛/2 to search
• else:

• 𝑛/2 if 𝑛 is odd
• 𝑛/2 − 1 if 𝑛 is even

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

Searching a Sorted Array
• Binary Search
• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

• The recurrence: T n = :1 , 𝑛 = 1
1 + 𝑛/2 , 𝑛 > 1

• Assume n is a power of 2: 𝑛/2 = 𝑛/2
• Substitution, telescope the recurrent:

𝑇 n = 1 + 𝑇
𝑛
2 = 1 + 1 + 𝑇

𝑛
4 = 1 + 1 + 1 + 𝑇

𝑛
8 = 1 + 1 + …+ 1

!$%&'())

∈ 𝑂(log 𝑛)

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

Searching a Sorted Array
• Binary Search

• Time complexity?
• Recursive Algorithms

• Recursion tree
• Substitution | Guess and prove by induction
• Master theorem

• Divide-and-Conquer

• Binary search is a divide-and-conquer approach
• Divide up problems into several subproblems (of the same type)
• Solve (conquer) each subproblem (usually recursively)
• Combine the solutions

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Searching a Sorted Array
• Comparing the running time
• Demo code

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

