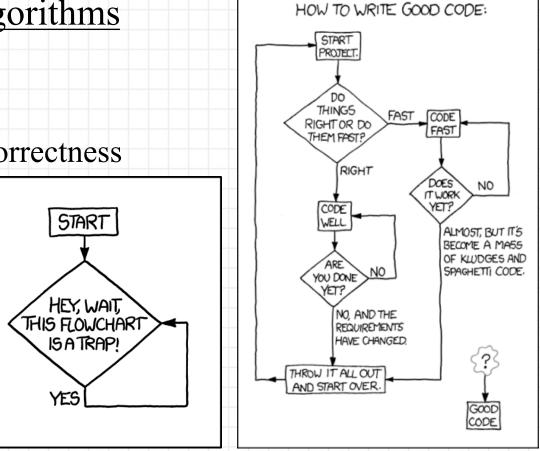
CS-3510 Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

Welcome!

- Course: Design and Analysis of Algorithms
- What?
 - Algorithms
 - Algorithmic paradigms; design and correctness
 - Performance analysis



Welcome!

• Why?

- <u>Fundamental</u> to all areas of computer science
 - Operating systems, Networks and distributed systems, Machine learning, Data science, Numerical computation, Cryptography, Computational biology, etc.
- Inseparable part of every technical interview | We talk about this more!
 - Internship, Part-time, Full-time
 - Software engineer (SWE), Machine learning engineer (MLE), Product manager (PM), Infrastructure, Research scientist, Data scientist, etc.
 - Large tech companies ~ small start-ups
- Useful and Fun!
 - Problem solving skills
 - Competitive programming, Hackathons, etc.

Welcome!

• When?

- Days: <u>Tuesday Thursday</u>
- Time: <u>3:30 5:40 pm EST</u>
- Where?
 - Klaus Advanced Computing 2443

• Prerequisites?

- (Some) discrete math and data structure knowledge
- 1. <u>CS 2050</u> or <u>CS 2051</u> or <u>MATH 2106</u>
- 2. <u>CS 1332 or MATH 3012 or MATH 3022</u>

- How? | Course Format
 - In-person lectures
 - In-person exams
- Lectures will NOT be recorded!
 - CoC does not provide recording option.
 - Remote/virtual options are not available.
- How to access the course material?
 - Course website: <u>http://www.cs3510.com/</u>

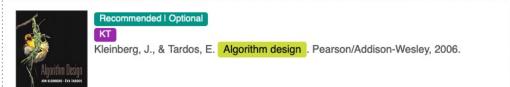
Course Website: <u>http://www.cs3510.com/</u>

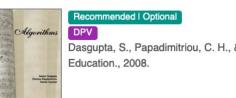
- Course materials
 - General schedule
 - Notes, slides, demo codes
 - Textbooks
 - Assignments
 - Exam dates
- Policies
 - Grading
 - Homework assignments
 - Late policies, regrade policies
 - Collaboration and honor code

Course Website: <u>http://www.cs3510.com/</u>

- Course materials
 - General schedule http://www.cs3510.com/lectures/
 - Notes, slides, demo codes
 - Textbooks http://www.cs3510.com/policies/#2-textbooks/
 - Assignments http://www.cs3510.com/assignments/
 - Exam dates
- Policies
 - Grading
 - Homework assignments
 - Late policies, regrade policies
 - Collaboration and honor code

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms , Third Edition, MIT Press, 2009. (Full text is available online for Georgia Tech students)





Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.

Course Website: <u>http://www.cs3510.com/</u>

- Course materials
 - General schedule
 - Notes, slides, demo codes
 - Textbooks
 - Assignments
 - Exam dates
- Policies
 - Grading -
 - Homework assignments
 - Late policies, regrade policies
 - Collaboration and honor code

Scheme 1:	Scheme 2:
- Homeworks: 30%	- Homeworks: 30%
- Exam 1: 30%	- Exam 1: 15%
- Exam 2: 30%	- Exam 2: 15%
- Final Exam: 10%	- Final Exam: 40%
3.2. Letter Grade Cutoff	
3.2. Letter Grade Cutoff A 90-100%	
_	
A 90-100%	
A 90-100% B 80-90%	

Course Website: <u>http://www.cs3510.com/</u>

- Course materials
 - General schedule
 - Notes, slides, demo codes
 - Textbooks
 - Assignments
 - Exam dates
- Policies
 - Grading
 - Homework assignments -
 - Late policies, regrade policies
 - Collaboration and honor code

- 6-7 assignments
- Every Friday, due the next Friday 11:59 pm EST
- First assignment will be released this Friday!
- Solutions must be typed
 - LaTeX is highly recommended
 - Tex template file will be provided
 - A cloud-based LaTeX editor: OverLeaf (free for GT)

_

Course Website: <u>http://www.cs3510.com/</u>

- Course materials
 - General schedule
 - Notes, slides, demo codes
 - Textbooks
 - Assignments
 - Exam dates
- Policies
 - Grading
 - Homework assignments
 - Late policies, regrade policies —>
 - Collaboration and honor code

- 6 total late days for the entire semester with no penalty
- At most 2 late days can be used for one assignment
- The late days are counted by day; a new late day starts at 12:00 am EST
- Submissions beyond the total allowed late days or 2 days after the deadline will get 0 credit.
- Regrade request
 - Within one week from the day grades published
 - Directly email to the corresponding TA

Course Website: <u>http://www.cs3510.com/</u>

- Course materials
 - General schedule
 - Notes, slides, demo codes
 - Textbooks
 - Assignments
 - Exam dates
- Policies
 - Grading
 - Homework assignments
 - Late policies, regrade policies
 - Collaboration and honor code —

- Acknowledge the code of academic integrity
- Collaboration is allowed but
 - You must write up and submit your own work
 - You must acknowledge (explicitly mention) your collaborators
 - Proper citation is required for any material used outside the lectures.

• So, in short:

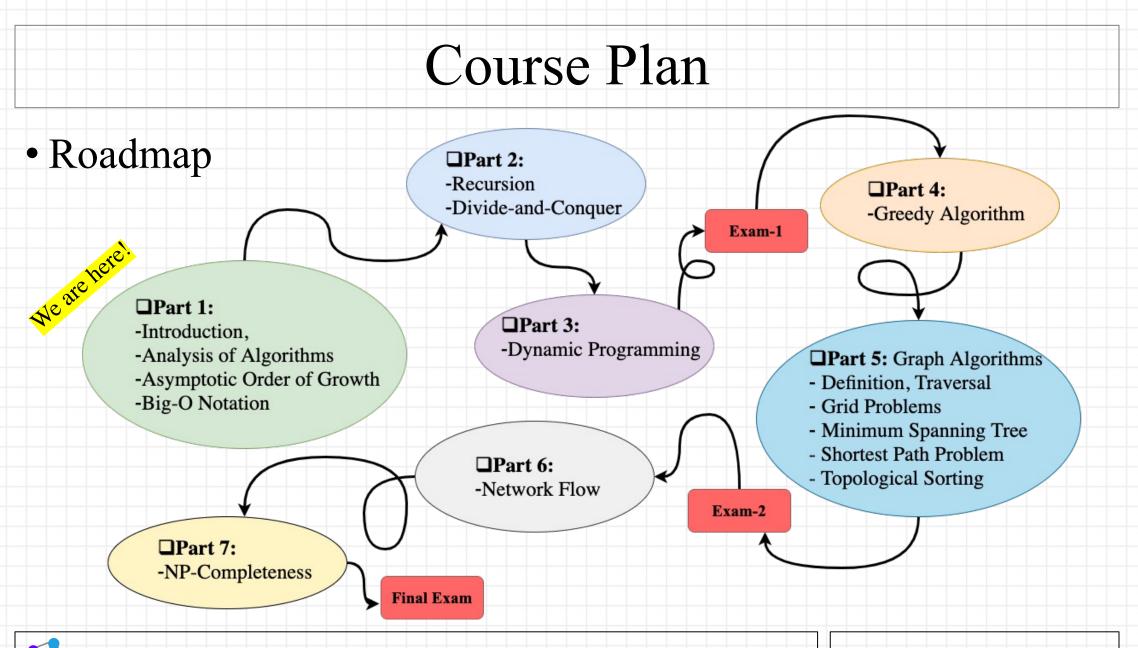
- All course materials: <u>http://www.cs3510.com/</u> (lecture notes, assignments, solutions, policies, etc.)
- Assignment submission: Canvas

• Communications:

• Discussions: Piazza

- Join today!
- Class Access Code: cs3510a--summer2022

- Email and Office hours
 - Office hours start from the next week
 - Information in the course website
 - Locations will be announced; most probably online Zoom meeting



CS-3510: Design and Analysis of Algorithms | Summer 2022

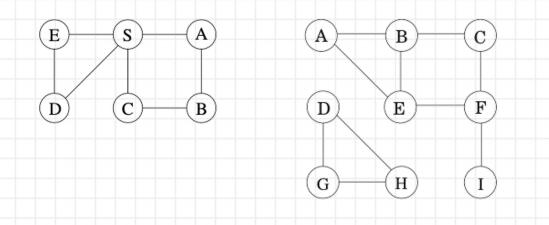
Course Content

- Plan1: More theoretical
 - More mathematical proof
 - More classic textbook problems in examples and assignments
- Plan 2: More practical
 - Technical interview problems in examples and assignments
 - Internship/fulltime
 - More demo codes

Course Content

• An example:

- Textbook: Graph Traversal Problem
 - Breadth-First/Depth-First Search
 - Design an algorithm to verify if there is a path between two nodes in a given graph.



• Interview: Grid Problem

• Given an m-by-n 2D binary matrix in which 0 represent water and 1 represent land, design an algorithm computing the number islands. An island includes one or more horizontally or vertically cells surrounded by water.

1	1	0	0	0
1	1	0	0	1
1	0	0	0	1
0	0	1	0	0

1	1	0	0	0
1	1	0	0	1
1	0	0	0	1
0	0	1	0	0

Course Content

- Plan1: More theoretical
 - More mathematical proof
 - More classic textbook problems in examples and assignments
- Plan 2: More practical
 - Technical interview problems in examples and assignments
 - More demo codes
- <u>Mentimeter</u>
 - Use your smart phone or laptop to <u>vote</u>:
 - https://www.menti.com/
 - Code: <u>37 01 46</u>
 - We will use Mentimeter for in-class quizzes, as well!

Algorithm Analysis

- Algorithm (Meriam-Webster Dictionary):
 - "A procedure for solving a <u>mathematical</u> problem in a <u>finite</u> number of steps that frequently involves repetition of an operation"
 - "Broadly : a step-by-step procedure for solving a problem or accomplishing some end."
- Algorithm (CLRS):
 - "Informally, an algorithm is any well-defined <u>computational procedure</u> that takes some value, or set of values, as <u>input</u> and produces some value, or set of values, as <u>output</u>. An algorithm is thus a <u>sequence of computational steps</u> that transform the input into the output."
 - "An algorithm is said to be <u>correct</u> if, for <u>every input instance</u>, it <u>halts</u> with the <u>correct output</u>. We say that a correct algorithm <u>solves</u> the given computational problem."

Algorithm Analysis

Correctness

• On every valid input, the algorithm produces the output that satisfies the required input/output relationship

• Proof of Correctness

- Induction
- Contradiction
- Counter-example
- . . .

• But we are also interested beyond correctness!

• The resources that an algorithm uses: time and space

Algorithm Analysis

- Analysis of Time and Space
 - Space: main memory used by an algorithm
 - Time: the number of CPU cycles used
 - We commonly are most interested in time (speed)
 - Space-time trade off
 - Dynamic programming
 - Here, we will review the time complexity, but the same discussion holds for space complexity.
 - Given the size of the input, how many computation steps does the algorithm take?
 - Running time
 - Time complexity

Running time (review)

- Model of Computation:
 - Generic one-processor, random-access machine (RAM)
 - No concurrency: instructions are executed one after another
 - Common atomic instructions: take <u>constant amount</u> of time
 - Arithmetic (e.g., add, subtract, multiply, divide, remainder, floor, ceiling)
 - Data movement (load, store, copy)
 - Control (conditional and unconditional branch, subroutine call and return)
 - Loops are not simple operations
 - Depends on the size of the input
 - Note call a subroutine takes constant amount of time but the subroutine runtime may not be constant.
- Runtime: number of steps taken by an algorithm, given the input size

Running time (review)

- Best-case: the minimum number of steps taken on any instance of size n
 - Example: sorting an array when the input array is already sorted
- Worse-case: the maximum number of steps taken on any instance of size n
 - Example: sorting an array when the input array is reverse sorted
- Average-case: the average number of steps taken on any instance of size n
- Time complexity:
 - The time complexity of an algorithms associates a number T(n) defined as the maximum amount of time, i.e., the worst case, taken on any input of size n.

• Time complexity:

- The time complexity of an algorithms associates a number T(n) defined as the maximum amount of time, i.e., the worst case, taken on any input of size n.
- Mathematical definition:
 - $T(n): \mathbb{N} \to \mathbb{R}$
 - T(n) represents a mapping from input size n, which is a non-negative integer, to a real number showing the runtime in the worst-case scenario for any input of size n.
- Problem/Limitation:
 - The exact analysis is often hard due to implementation details, etc.
 - How the runtime is scaling-up if the input size increases? Rate of growth
- Better approach: asymptotic analysis

- Asymptotic Order of Growth
 - It is easier to talk about the lower bound and upper bound of the running time.
 - To practically deal with time complexity analysis, we use asymptotic notations.
 - The asymptotic growth of a function (in this case T(n)) is specified using Θ , 0, and Ω notations.
 - Asymptotic means for "very large" input size, as n grows without bound or "asymptotically".

- Asymptotic Order of Growth
 - In general, the asymptotic notations define bounds on the growth of a function. Informally, a function *f*(*n*) is:
 - $\Omega(g(n))$ if g(n) is an asymptotic lower bound for f(n)
 - O(g(n)) if g(n) is an asymptotic upper bound for f(n)
 - $\Theta(g(n))$ if g(n) is an asymptotic tight bound for f(n)

- Asymptotic Order of Growth (Formal definition):
 - Big Omega (lower bound):

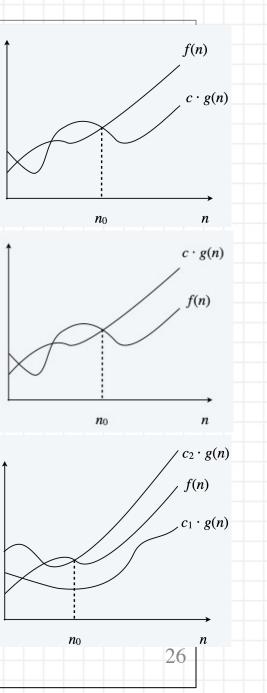
f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge cg(n) \ge 0$ for all $n \ge n_0$.

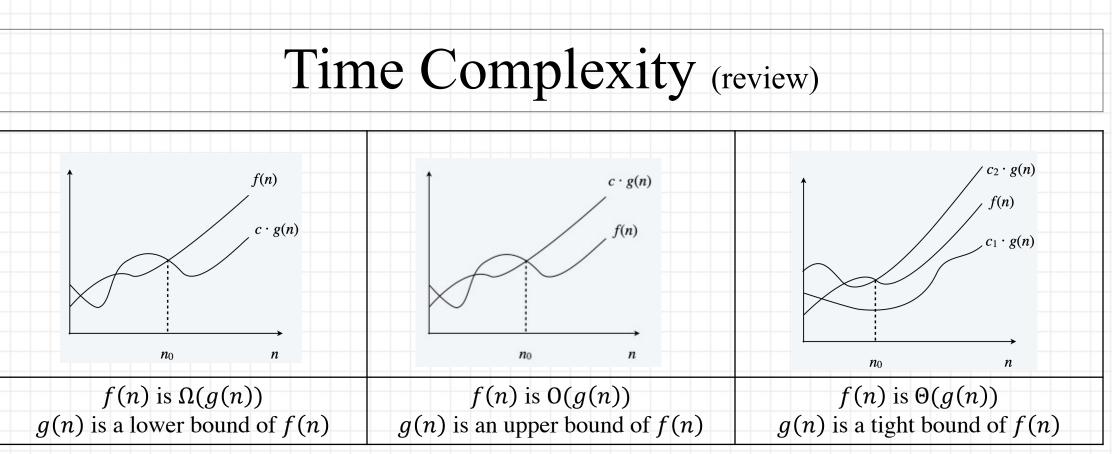
- **Big O (upper bound):** f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- Big Theta (tight bound):

f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

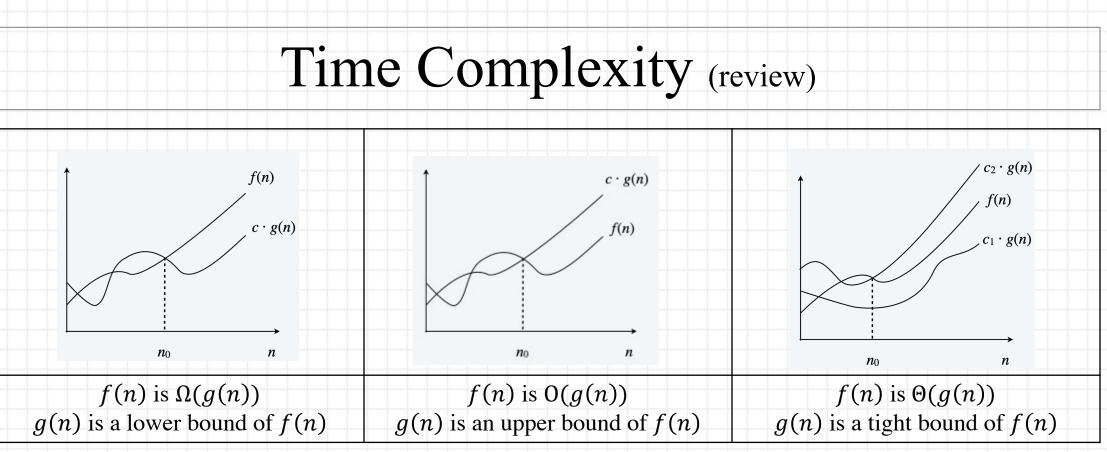
• Note: f(n) is $\Theta(g(n))$ iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

CS-3510: Design and Analysis of Algorithms | Summer 2022

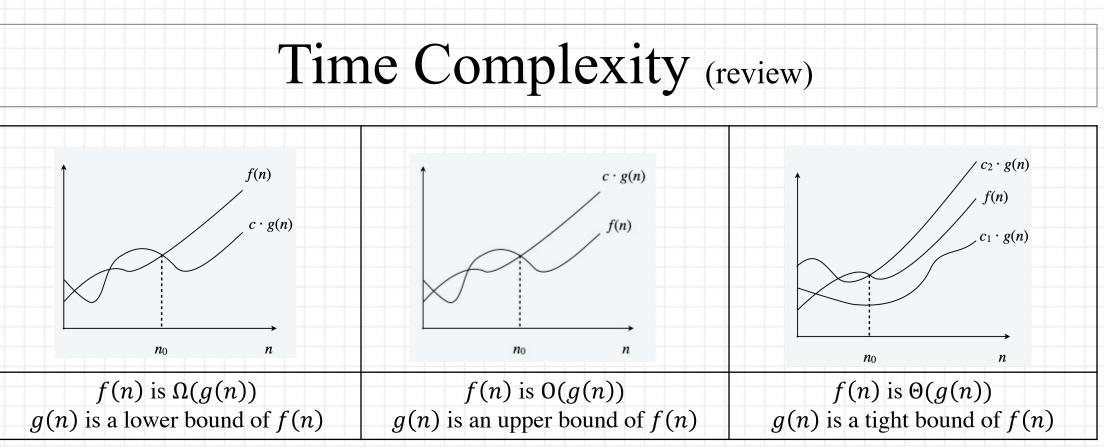




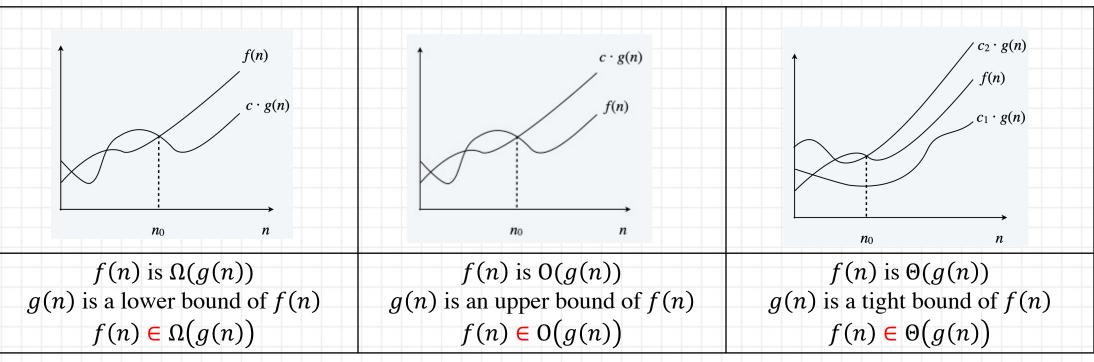
- Ex. Let $f(n) = 35n^2 + 10n + 5$. Then, we can say: - f(n) is $O(n^2), O(n^3), \Omega(n), \Omega(n^2)$, and $\Theta(n^2)$.
 - -f(n) is not $O(n), O(n\log n), \Omega(n^3), \Theta(n), \Theta(n^3)$



- Ex. Let $f(n) = 35n^2 + 10n + 5$. Then, we can say:
 - $f(n) \in O(n^2), O(n^3), \Omega(n), \Omega(n^2), \text{and } \Theta(n^2).$
 - $f(n) \notin O(n), O(n\log n), \Omega(n^3), \Theta(n), \Theta(n^3).$
- $f(n) \in O(g(n))$ means f(n) is in the set of functions bounded by g(n) from above



- $f(n) \in O(g(n))$ means f(n) is in the set of functions bounded by g(n) from above
- Slight abuse of asymptotic notations: f(n) = O(g(n))
 - Often used by computer scientist
 - Problem: equality is not transitive. (Ex. Let $g_1(n) = 7n^3$ and $g_2(n) = 2n^3$. We have $g_1(n) = O(n^3)$ and $g_2(n) = O(n^3)$, but we cannot conclude $g_1(n) = g_2(n)$)



- The time complexity of an algorithms associates a number T(n) defined as the maximum amount of time, i.e., the worst case, taken on any input of size n.
- Big-O: $T(n) \in O(g(n))$

• Big O Notation Properties

Reflexivity	$f ext{ is } O(f)$
Constants	If f is $O(g)$ and $c > 0$, then cf is $O(g)$
Products	If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$
Sums (Additivity)	If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max \{g_1, g_2\})$ Ex. If $f_1 \in O(n^2)$ and $f_2 \in O(n^4)$. Then, $f_1 + f_2 \in O(n^4)$
Transitivity	If f is $O(g)$ and g is $O(h)$, then f is $O(h)$

- So, we can ignore the lower terms and constants:
 - Ex. $f = 2n^3 + 4n^2 5n + 1 \in O(n^3)$
 - Ex. $f = 4n^5 \in O(n^5)$

• Asymptotic Bounds for Some Common Functions

Polynomials	$f(n) = a_0 + a_1 n + \dots + a_d n^d \text{ is } \Theta(n^d) \text{ and thus, } O(n^d) \text{ if } a_d > 0.$
Logarithms	$log_a n is \Theta(log_b n) \text{ for every } a > 1 \text{ and } b > 1.$ Note: $O(log_a n) = O(log_b n) \text{ (Recall } log_b n = log_b a \times log_a n)$
Logarithms vs polynomials	$\log_a n$ is $O(n^d)$ for every $a>1$ and $d>0$. Logarithms grow slower than every polynomial regardless of how small d is.
Exponential vs Polynomials	n^d is O(r^n) for every $d>0$ and $r>1$. Exponentials grow faster than every polynomial regardless of how big d is.

• Demo code

(1) Constant time: Running time is O(1)

- Bounded by a constant which does not depend on input size n.
- Examples
 - Arithmetic/logic operation
 - Declare/initialize a variable
 - Access an element in an array
 - Follow a link in a linked list
 - Conditional branch

(2) Linear time: Running time is O(n)

- The runtime scales up linearly with respect to the input size n.
- Examples
 - Finding the minimum and maximum elements in an array or linked list
 - Searching for an element in an unsorted array
 - Combining two sorted list

(3) Logarithmic time: Running time is $O(\log n)$

- The runtime scales up logarithmically with respect to the input size n.
- Examples
 - Binary Search in a sorted array.
 - Finding the target sum in a sorted array.

(4) $O(n \log n)$:

• Sorting elements of an array in ascending order using Merge-Sort algorithm

(5) $0(n^2)$

• Algorithm to solve the closest pair of points problem. Given a list of *n* points in the plane (*x*₁, *y*₁), ..., (*x_n*, *y_n*), find the pair that is closest to each other.

(6) $O(n^3)$

• Given an array of *n* distinct integers, find three that sum to 0.

(7) Polynomial time: Running time is $O(n^k)$ for some constant k > 0.

- Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.
- In general, an algorithm is considered efficient if it has polynomial running time.

Common Running Times

(8) Exponential time: Running time is $O(2^{n^k})$ for some constant k > 0.

• $O(2^n)$: Enumerating all subsets of a set of n elements.

References

- The lecture slides are heavily based on the <u>suggested textbooks</u> and the corresponding published lecture notes:
 - CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms, Third Edition, MIT Press, 2009.
 - KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.
 - DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher Education., 2008.

CS-3510: Design and Analysis of Algorithms

Some Examples

Instructor: Shahrokh Shahi

College of Computing Georgia Institute of Technology Summer 2022

• Problem

- Given a sorted array, including integer numbers, and a target number, design an algorithm which returns True if the target number is in the given array, and False otherwise.
- Input: $A = [a_1, a_2, ..., a_N]$ s.t. $a_1 < a_2 < ... < a_N$, target = k
- Output: True if $k \in A$, False if $k \notin A$
- Example
 - Input: $A = [-1, 0, 2, 5, \frac{8}{2}, 11]$, target = 8
 - Output: True

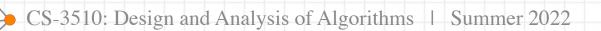
• Approach 1:

- Brute force search: checking every element one-by-one
- In this case: Linear Search

•
$$A = [-1, 0, 2, 5, 8, 11]$$
, target = 8

•
$$A = [-1, 0, 2, 5, 8, 11]$$
, target = 8

•
$$A = [-1, 0, 2, 5, 8, 11], target = 8$$



• A = [-1, 0, 2, 5, 8, 11], target = 8

41

- Approach 1:
 - Brute force search: checking every element one-by-one
 - In this case: Linear Search
 - Time complexity: O(n)
 - Space complexity: O(1)

Algorithm 1: Linear Search Input: $A = \{a_1, a_2, ..., a_n\}, k$ Result: True or False

- 1 for (i = 1 to n) do 2 | if $k == a_i$) then 3 | // the target is in the array 4 end
- What if n=1,000,000 and k == a_n ? 5
 - 5 return False

• Can we do better?

• Binary Search

- Assume the value of the mid element is less than the target, do we still need search the left half?
- At each iteration compare the mid element of with the target:
 - if mid == target: return True
 - if mid < target: discard the left sub-array and continue to search the right sub-array
 - if mid > target: discard the right sub-array and continue to search the left sub-array
- Naturally can be implemented as a recursive algorithm.
- Recursion
 - Function call itself on a smaller domain
 - One or more base cases to stop the recursion

• Approach 2: Binary Search

•
$$A = [-1, 0, 2, 5, 8, 11], target = 8$$

lo hi

• A = [-1, 0, 2, 5, 8, 11], target = 8

• A = [-1, 0, 2, 5, 8, 11], target = 8 2 < 8 \rightarrow search right sub-array

• $A = [-1, 0, 2, 5, \underline{8}, 11], target = 8$

• Return True!

• Binary Search

Algorithm 3: Binary Search (Recursive)	Algorithm 2: Binary Search (Iterative)
Input: $A = \{a_1, a_2,, a_n\}, k, lo = 1, hi = n$ Result: <i>True</i> or <i>False</i>	Input: $A = \{a_1, a_2,, a_n\}, k$ Result: $True$ or $False$
<pre>// base case 1 if $(lo > hi)$ then 2 return False 3 end // recurrence relation 4 mid $\leftarrow [(lo + hi)/2]$ 5 if $(a_{mid} == k)$ then // the target is in the array 6 return True 7 else if $(a_{mid} < k)$ then 8 return BinarySearch(A, k, mid+1, hi) 9 else 10 return BinarySearch(A, k, lo, mid-1) 11 end</pre>	1 $lo \leftarrow 1$ 2 $hi \leftarrow n$ 3 while $(lo \le hi)$ do 4 $mid \leftarrow [(lo + hi)/2]$ 5 $if (a_{mid} == k)$ then // the target is in the array 6 $return True$ 7 $else if (a_{mid} < k)$ then 8 $lo \leftarrow mid + 1$ 9 $else$ 10 $hi \leftarrow mid - 1$ 11 end 12 end
	13 return $False$

- Binary Search
 - Time complexity?
 - Recursive Algorithms
 - Recursion tree
 - Substitution | Guess and prove by induction
 - Master theorem

```
Algorithm 3: Binary Search (Recursive)
Input: A = \{a_1, a_2, ..., a_n\}, k, lo = 1, hi = n
Result: True or False
```

// base case 1 if (lo > hi) then return False 3 end

```
// recurrence relation
4 mid \leftarrow [(lo+hi)/2]
5 if (a_{mid} == k) then
     // the target is in the array
     return True
```

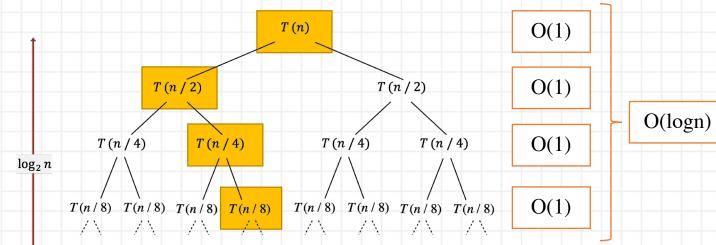
7 else if $(a_{mid} < k)$ then

6

- return BinarySearch(A, k, mid+1, hi) 8 9 else
- return BinarySearch(A, k, lo, mid-1) 10 11 end

• Binary Search

- Time complexity?
- Recursive Algorithms
 - Recursion tree
 - Substitution | Guess and prove by induction
 - Master theorem



Algorithm 3: Binary Search (Recursive) **Input:** $A = \{a_1, a_2, ..., a_n\}, k, lo = 1, hi = n$ **Result:** *True* or *False* // base case 1 if (lo > hi) then return False 3 end // recurrence relation 4 $mid \leftarrow [(lo+hi)/2]$ 5 if $(a_{mid} == k)$ then // the target is in the array return True 6 7 else if $(a_{mid} < k)$ then return BinarySearch(A, k, mid+1, hi) 8 9 else **return** BinarySearch(A, k, lo, mid-1) 11 end

10

- Binary Search
 - Time complexity?
 - Recursive Algorithms
 - Recursion tree
 - Substitution | Guess and prove by induction
 - Master theorem
 - mid is always placed at $1 + \lfloor n/2 \rfloor$
 - if $k < a_{mid}$ we have $\lfloor n/2 \rfloor$ to search
 - else:
 - [*n*/2] if *n* is odd
 - $\lfloor n/2 \rfloor 1$ if *n* is even

```
Algorithm 3: Binary Search (Recursive)
  Input: A = \{a_1, a_2, ..., a_n\}, k, lo = 1, hi = n
  Result: True or False
  // base case
1 if (lo > hi) then
      return False
3 end
  // recurrence relation
4 mid \leftarrow [(lo+hi)/2]
5 if (a_{mid} == k) then
      // the target is in the array
      return True
7 else if (a_{mid} < k) then
      return BinarySearch(A, k, mid+1, hi)
9 else
      return BinarySearch(A, k, lo, mid-1)
11 end
```


• Binary Search

- Time complexity?
- Recursive Algorithms
 - Recursion tree
 - Substitution | Guess and prove by induction
 - Master theorem

• The recurrence:
$$T(n) = \begin{cases} 1 & , n = 1 \\ 1 + \lfloor n/2 \rfloor, n > 1 \end{cases}$$

- Assume n is a power of 2: $\lfloor n/2 \rfloor = n/2$
- Substitution, telescope the recurrent:

$$T(n) = 1 + T\left(\frac{n}{2}\right) = 1 + 1 + T\left(\frac{n}{4}\right) = 1 + 1 + 1 + T\left(\frac{n}{8}\right) = \underbrace{1 + 1 + \dots + 1}_{1 + 1 + \dots + 1} \in O(\log(n))$$

Algorithm 3: Binary Search (Recursive)
Input:
$$A = \{a_1, a_2, ..., a_n\}, k, lo = 1, hi = n$$

Result: $True$ or $False$

- // base case 1 if (lo > hi) then 2 | return False3 end
 - // recurrence relation
- 4 $mid \leftarrow [(lo + hi)/2]$
- 5 if $(a_{mid} == k)$ then
 - // the target is in the array
- 6 **return** *True*
- 7 else if $(a_{mid} < k)$ then
- 8 | return BinarySearch(A, k, mid+1, hi)
- 9 else
- 10 | return BinarySearch(A, k, lo, mid-1)
 11 end

CS-3510: Design and Analysis of Algorithms | Summer 2022

• Binary Search

- Time complexity?
- Recursive Algorithms
 - Recursion tree
 - Substitution | Guess and prove by induction
 - Master theorem
 - Divide-and-Conquer

```
Algorithm 3: Binary Search (Recursive)
```

Input: $A = \{a_1, a_2, ..., a_n\}, k, lo = 1, hi = n$ Result: True or False

- // base case 1 if (lo > hi) then 2 | return False
- з end

// recurrence relation 4 $mid \leftarrow [(lo + hi)/2]$ 5 if $(a_{mid} == k)$ then

- | // the target is in the array
- 6 return True
- 7 else if $(a_{mid} < k)$ then
- 8 | return BinarySearch(A, k, mid+1, hi)

🤋 else

10 | return BinarySearch(A, k, lo, mid-1)
11 end

- Binary search is a divide-and-conquer approach
 - Divide up problems into several subproblems (of the same type)
 - Solve (conquer) each subproblem (usually recursively)
 - Combine the solutions

- Comparing the running time
 - Demo code

