CS-3510
Design and Analysis ot

Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022




Welcome!

* Course: Design and Analysis of Algorithms
* What?
* Algorithms

* Algorithmic paradigms; design and correctness

* Performance analysis

START

HEY, WAIT,

HOW TO WRITE GOOD CODE:
START
PROJECT.
po
THINGS
RIGHTOR Do Yool of COE
THEM FRST?
RIGHT
DOES \  NO
ITWORK '
YET?
ALMOST, BUT M5
BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.
?
THROW ITALLOUT |
AND START OVER. l
GOOD
CODE

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022




Welcome!

* Why?
* Fundamental to all areas of computer science

* Operating systems, Networks and distributed systems, Machine learning, Data science,
Numerical computation, Cryptography, Computational biology, etc.

* Inseparable part of every technical interview | We talk about this more!
* Internship, Part-time, Full-time

» Software engineer (SWE), Machine learning engineer (MLE), Product manager (PM),
Infrastructure, Research scientist, Data scientist, etc.

» Large tech companies ~ small start-ups

e Useful and Fun!

* Problem solving skills
« Competitive programming, Hackathons, etc.

e
v




Welcome!

* When?
* Days: Tuesday Thursday
e Time: 3:30 - 5:40 pm EST

* Where?
* Klaus Advanced Computing 2443

* Prerequisites?
* (Some) discrete math and data structure knowledge

1. CS 2050 or CS 2051 or MATH 2106
2. CS 1332 or MATH 3012 or MATH 3022

@) CS-3510: Design and Analysis of Algorithms | Summer 2022




Logistics

* How? | Course Format

* In-person lectures
* In-person exams

e Lectures will NOT be recorded!

* CoC does not provide recording option.
* Remote/virtual options are not available.

e How to access the course material?
* Course website: http:// www.cs3510.com/

@) CS-3510: Design and Analysis of Algorithms | Summer 2022



http://www.cs3510.com/

Logistics

* Course Website: http:/www.cs3510.com/

e Course materials
* General schedule
Notes, slides, demo codes
Textbooks
Assignments
Exam dates

 Policies
* Grading
* Homework assignments
 Late policies, regrade policies
* Collaboration and honor code

* Check regularly for announcements and course materials.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022



http://www.cs3510.com/

Logistics

* Course Website: http:/www.cs3510.com/

. Course materials \“:‘: S Hh ,T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. [ Introduction to Algorithms ,
Py General Schedule http'//wwwcs35]()Com/]ectures/ """“A'Iéom Third Edition, MIT Press, 2009. (Full text is available online for Georgia Tech students) :
* Notes, slides, demo codes
* Textbooks http://www.cs3510.com/policies/#2-textbooks/ - S
e Assignments http://www.cs3510.com/assignments/ ‘ 5
e Exam dates Kleinberg, J., & Tardos, E. [ Algorithm design . Pearson/Addison-Wesley, 2006.

 Policies
* Grading
* Homework assignments
 Late policies, regrade policies
* Collaboration and honor code

Recommended | Optional

Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. | Algorithms , McGraw-Hill Higher
Education., 2008. .

* Check regularly for announcements and course materials.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022 7



http://www.cs3510.com/
http://www.cs3510.com/lectures/
http://www.cs3510.com/policies/
http://www.cs3510.com/assignments/

Logistics

e Course Website:

http://www.cs3510.com/

 Course materials

General schedule

Notes, slides, demo codes
Textbooks

Assignments

Exam dates

* Policies

Grading

Scheme 1:
- Homeworks: 30%
- Exam 1: 30%
- Exam 2: 30%

- Final Exam: 10%

3.2. Letter Grade Cutoff
90-100%

Homework assignments
Late policies, regrade policies
Collaboration and honor code

80-90%
70-80%
60-70%
0-60%

m o o W >

Scheme 2:

- Homeworks: 30%

- Exam 1: 15%

- Exam 2: 15%

- Final Exam: 40%

* Check regularly for announcements and course materials.

@ CS-3510: Design and Analysis of Algorithms | Summer 2022



http://www.cs3510.com/

Logistics

* Course Website: http:/www.cs3510.com/

e Course materials
e General schedule
Notes, slides, demo codes

* Textbooks
* Assignments
* Exam dates - 6-7 assignments
- Every Friday, due the next Friday 11:59 pm EST
* Policies - First assignment will be released this Friday!
* Grading - Solutions must be typed
 Homework assignments ——p - LaTeX is highly recommended
 Late policies, regrade policies - Tex template file will be provided
e (Collaboration and honor code - A cloud-based LaTeX editor: OverLeaf (free for GT)

* Check regularly for announcements and course materials.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022



http://www.cs3510.com/

Logistics

* Course Website: http:/www.cs3510.com/

e Course materials
e General schedule
Notes, slides, demo codes

* Textbooks - 6 total late days for the entire semester with no penalty
* Assignments - At most 2 late days can be used for one assignment
* Exam dates - The late days are counted by day; a new late day starts at
12:00 am EST
* Policies - Submissions beyond the total allowed late days or 2 days
e Grading after the deadline will get O credit.
* Homework assignments - Regrade request
 Late policies, regrade policies —» - Within one week from the day grades published
* Collaboration and honor code - Directly email to the corresponding TA

* Check regularly for announcements and course materials.

% CS-3510: Design and Analysis of Algorithms | Summer 2022 10



http://www.cs3510.com/

Logistics

* Course Website: http:/www.cs3510.com/

e Course materials
e General schedule
Notes, slides, demo codes

e Textbooks
* Assignments
* Exam dates - Acknowledge the code of academic integrity
. - Collaboration is allowed but
* Policies . - You must write up and submit your own work
e Grading

- You must acknowledge (explicitly mention) your
collaborators
Proper citation is required for any material used outside
the lectures.

* Homework assignments
 Late policies, regrade policies
* Collaboration and honor code —»

* Check regularly for announcements and course materials.

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

11



http://www.cs3510.com/

Logistics

e SO, 1n short:

* All course materials: http:/www.cs3510.com/
(lecture notes, assignments, solutions, policies, etc.)

* Assignment submission: Canvas

% CS-3510: Design and Analysis of Algorithms | Summer 2022

12



http://www.cs3510.com/

Logistics

* Communications:

* Discussions: Piazza

* Join today!
e Class Access Code: ¢s3510a--summer2022

 Email and Office hours
e Oftice hours start from the next week

* Information in the course website
* Locations will be announced; most probably online Zoom meeting

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

13




Course Plan

* Roadmap  QPart2:

~ -Recursion
. -Divide-and-Conquer

OPart 4:

& L
Q@‘b OPart 1:
-Introduction, ,~ QPart 3:

\
-Analysis of Algorithms 7 \ -Dynamic Progr amming/) QPart 5: Graph Algorithm
-Asymptotic Order of Growth - Definition, Traversal
-Big-O Notation - Grid Problems
- Minimum Spanning Tree
| - Shortest Path Problem

UPart 6:

-Network Flow - Topological Sorting

QPart 7:

-NP-Completeness -

-Greedy Algorithm

@ CS-3510: Design and Analysis of Algorithms | Summer 2022

14




Course Content

 Planl: More theoretical

e More mathematical proof
* More classic textbook problems 1n examples and assignments

* Plan 2: More practical

* Technical interview problems in examples and assignments
* Internship/fulltime

* More demo codes

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

15




Course Content

* An example:

» Textbook: Graph Traversal Problem

* Breadth-First/Depth-First Search

* Design an algorithm to verify if there is a
path between two nodes in a given graph.

e Interview: Grid Problem

Given an m-by-n 2D binary matrix in
which 0 represent water and 1 represent
land, design an algorithm computing the
number islands. An island includes one or
more horizontally or wvertically cells

(® / s)—(A) (A—®)—(c) surrounded by water.
L I ] INERY NEEP!S 11000 1(1]0]0 |0
(o) (c—(B) (p) (E)—AF)
D l 1 (1|0 |0 |1 1|10 (0|1
1 (o |0 |0 |1 1100 |0 |1
0011010 0/0[1]0]0

@:} CS-3510

: Design and Analysis of Algorithms | Summer 2022

16




Course Content

* Planl: More theoretical
* More mathematical proof
* More classic textbook problems 1n examples and assignments

* Plan 2: More practical
* Technical interview problems in examples and assignments
* More demo codes

e Mentimeter

* Use your smart phone or laptop to vote:
* https://www.menti.com/

e Code: 3701 46

E'-'

* We will use Mentimeter for in-class quizzes, as well!

Y



https://www.menti.com/135nu9y5kc
https://www.menti.com/

Algorithm Analysis

* Algorithm (Meriam-Webster Dictionary):

* “A procedure for solving a mathematical problem in a finite number of steps
that frequently involves repetition of an operation™

* “Broadly : a step-by-step procedure for solving a problem or accomplishing
some end.”

* Algorithm (CLRS):

* “Informally, an algorithm 1s any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or set of
values, as output. An algorithm 1s thus a sequence of computational steps that
transform the input into the output.”

* “An algorithm 1s said to be correct if, for every input instance, 1t halts with the

correct output. We say that a correct algorithm solves the given computational
problem.”

Y




Algorithm Analysis

e Correctness

* On every valid input, the algorithm produces the output that satisfies the
required input/output relationship

* Proof of Correctness
e Induction
e Contradiction
* Counter-example

* But we are also interested beyond correctness!
* The resources that an algorithm uses: time and space

%> CS-3510: Design and Analysis of Algorithms | Summer 2022

19




Algorithm Analysis

* Analysis of Time and Space
* Space: main memory used by an algorithm
* Time: the number of CPU cycles used
* We commonly are most interested in time (speed)
* Space-time trade off
* Dynamic programming
* Here, we will review the time complexity, but the same discussion holds for
space complexity.

* Given the size of the mput, how many computation steps does the algorithm
take?
* Running time
* Time complexity

e
v




Running time (eview)

* Model of Computation:
* Generic one-processor, random-access machine (RAM)
* No concurrency: instructions are executed one after another

« Common atomic instructions: take constant amount of time
 Arithmetic (e.g., add, subtract, multiply, divide, remainder, floor, ceiling)

* Data movement (load, store, copy)
* Control (conditional and unconditional branch, subroutine call and return)

* Loops are not simple operations
* Depends on the size of the input

* Note call a subroutine takes constant amount of time but the subroutine
runtime may not be constant.

* Runtime: number of steps taken by an algorithm, given the input size

Y




Running time (eview)

* Best-case: the minimum number of steps taken on any instance of size n
* Example: sorting an array when the input array 1s already sorted

* Worse-case: the maximum number of steps taken on any instance of size n
* Example: sorting an array when the input array is reverse sorted

* Average-case: the average number of steps taken on any instance of size n

* Time complexity:
* The time complexity of an algorithms associates a number T(n) defined as the maximum
amount of time, 1.e., the worst case, taken on any input of size n.

e
v




Time COIllplEXlty (review)

* Time complexity:
* The time complexity of an algorithms associates a number T(n) defined as the
maximum amount of time, 1.e., the worst case, taken on any input of size n.

e Mathematical definition:
e T(n): N>R

* T(n) represents a mapping from input size n, which is a non-negative integer, to a real number
showing the runtime in the worst-case scenario for any input of size n.

* Problem/Limitation:
* The exact analysis is often hard due to implementation details, etc.
* How the runtime 1s scaling-up if the input size increases? Rate of growth

* Better approach: asymptotic analysis

P
L 4




Time COIllplEXlty (review)

* Asymptotic Order of Growth

* It 1s easier to talk about the lower bound and upper bound of the running time.
* To practically deal with time complexity analysis, we use asymptotic notations.

* The asymptotic growth of a function (in this case T(n)) 1s specified using 0, O,
and () notations.

* Asymptotic means for “very large” input size, as n grows without bound or
“asymptotically”.

P
L 4




Time COIllplEXlty (review)

* Asymptotic Order of Growth

* In general, the asymptotic notations define bounds on the growth of a function.

Informally, a function f(n) is:
* Q(g(n)) if g(n) is an asymptotic lower bound for f(n)
* 0(g(n)) if g(n) is an asymptotic upper bound for f(n)

* O(g(n)) if g(n) is an asymptotic tight bound for f(n)

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

25




Time COIleEXlty (review) "

c- g(n)

* Asymptotic Order of Growth (Formal definition):

* Big Omega (lower bound):
f(n) 1s 2(g(n)) 1f there exist constants ¢ > 0 and n, > 0 such that
f(n) > cg(n) >0 for all n > n,.

¢ g(n)

fin)
* Big O (upper bound):
f(n) 1s O(g(n)) 1f there exist constants ¢ > 0 and n, > 0 such that
0 <f(n) <cg(n) for all n > n,

| && | K
(=] (=)
~ ] L S

2 g(m)
* Big Theta (tight bound): f
f(n) 1s O(g(n)) 1f there exist constants ¢; >0, ¢, >0, and n,> 0

such that 0 <¢,g(n) < f(n) <c,g(n) for all n > n,,.
* Note: f(n) 1s O(g(n)) itt f(n) 1s O(g(n)) and f(n) 1s 2(g(n))

ci - g(n)

e
v




Time CompleXIty (review)

f(n)

c- g(n)

no n

c-gn)

fn)

no n

2 g(n)
f)

c1 - gn)

no n

f(n)is Q(g(n))
g(n) is a lower bound of f(n)

f(n) is 0(g(n))
g(n) is an upper bound of f(n)

f(n)is ©(g(n))
g(n) is a tight bound of f(n)

« Ex. Let f(n) = 35n% + 10n + 5. Then, we can say:
- f(n) is 0(n?), 0(n?),Q(n), Q(n?),and O(n?).
- f(n) is not 0(n), 0(nlogn), Q(n3), B(n), O(n3)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

27




Time COIleEXlty (review)

f(n) ¢ gn) c2 g(n)
fn)
c-gn) f(n) c1 - g(n)
no n no n o n
f(n) is Q(g(n)) f(n) is 0(g(n)) f(n) is ©(g(n))

g(n) is a lower bound of f(n)

g(n) is an upper bound of f(n)

g(n) is a tight bound of f(n)

« Ex. Let f(n) = 35n% + 10n + 5. Then, we can say:
- f(n) € 0(n?), 0(n?), A(n), Q(n?),and B(n?).

- f(n) € 0(n),0(nlogn), Q(n3), B(n), O(n3).

* f(n) € O( Jui (n)) means f (n) is in the set of functions bounded by g(n) from above

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

28




Time COIleEXlty (review)

f(n) ¢ gn) c2 g(n)
fn)
c-gn) f(n) c1 - g(n)
no n no n o n
f(n) is Q(g(n)) f(n) is 0(g(n)) f(n) is ©(g(n))

g(n) is a lower bound of f(n)

g(n) is an upper bound of f(n)

g(n) is a tight bound of f(n)

* f(n) e O( Jui (n)) means f(n) is in the set of functions bounded by g(n) from above

« Slight abuse of asymptotic notations: f(n) = O( g (n))

* Often used by computer scientist
* Problem: equality is not transitive. (Ex. Let g;(n) = 7n° and g,(n) = 2n3. We have g, (n) =

0(n3) and g,(n) = 0(n3), but we cannot conclude g;(n) = g,(n))

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

29




Time COIllplEXlty (review)

f e &2~ g
S
¢ 8 £ 1+ gn)
f(n)is Q(g(n)) f(n)is 0O(g(n)) f(n)is ©(g(n))
g(n) is a lower bound of f(n) g(n) is an upper bound of f(n) g(n) is a tight bound of f(n)
f(n) € a(gm)) f(n) € 0(g(m)) f(n) € 6(g(n))

* The time complexity of an algorithms associates a number T(n) defined as the
maximum amount of time, 1.e., the worst case, taken on any input of size n.

* Big-O:|T(n) € O(g(n))

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

30




Time CompleXIty (review)

* Big O Notation Properties

Reflexivity fis O(f)

Constants If fis O(g) and ¢ > 0, then cfis O(g)

Products If 1 1s O(g,) and f> is O(g»), then f; f> is O(g, g»)

Sums If £, 1s O(gy) and f; is O(g»), then f; + f> 1s O(max {g;, £>})
(Additivity) | Ex.If f; € O(n?) and /> € O(n?). Then, f; + > € O(n?)
Transitivity If fis O(g) and g is O(h), then f1s O(h)

* So, we can ignore the lower terms and constants:

 Ex. f=2n°+4n’>-5n+ 1€ O(n’)
 Ex. f=4n> € O(n’)

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

31




Time COIllplEXlty (review)

* Asymptotic Bounds for Some Common Functions

Polynomials

f(n)y=ay+an+ ...+ amn?is O(n?) and thus, O(n?) if a,>0.

Logarithms

log, n is ©(log, n) for every a>1 and b>1.
Note: O(log, n) = O(log, n) (Recall log, n = log, a x log, n)

Logarithms vs polynomials

log, n is O(n?) for every a>1 and d>0.

Logarithms grow slower than every polynomial regardless of how small d is.

Exponential vs Polynomials

n¢ is O(r") for every d>0 and r>1.
Exponentials grow faster than every polynomial regardless of how big d is.

* Demo code

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

32




Common Running Times

(1) Constant time: Running time is O(1)
* Bounded by a constant which does not depend on input size n.

* Examples
* Arithmetic/logic operation
* Declare/initialize a variable
* Access an element 1n an array
* Follow a link 1n a linked list
* Conditional branch

%> CS-3510: Design and Analysis of Algorithms | Summer 2022




Common Running Times

(2) Linear time: Running time is O(n)
* The runtime scales up linearly with respect to the input size n.

* Examples
* Finding the minimum and maximum elements in an array or linked list

* Searching for an element in an unsorted array
* Combining two sorted list

%> CS-3510: Design and Analysis of Algorithms | Summer 2022




Common Running Times

(3) Logarithmic time: Running time is O(log n)
* The runtime scales up logarithmically with respect to the mnput size n.

* Examples
* Binary Search in a sorted array.
* Finding the target sum in a sorted array.

(4) O(nlog n):

* Sorting elements of an array in ascending order using Merge-Sort algorithm

e
v




Common Running Times

(5) 0(n?)

* Algorithm to solve the closest pair of points problem. Given a list of n points
in the plane (x,, y,), ..., (xs, y»), find the pair that is closest to each other.

(6) 0(n?)

* Given an array of n distinct integers, find three that sum to O.

(7) Polynomial time: Running time 1s O(nk) for some constant k > 0.

* Independent set of size k. Given a graph, find k£ nodes such that no two are
joined by an edge.

* In general, an algorithm 1s considered efficient if it has polynomial running
time.

e
v




Common Running Times

(8) Exponential time: Running time 1s O (an) for some constant k > 0.

* 0(2™): Enumerating all subsets of a set of n elements.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

37




References

* The lecture slides are heavily based on the suggested textbooks and the
corresponding published lecture notes:

* CLRS: Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to Algorithms,
Third Edition, MIT Press, 2009.

« KT: Kleinberg, J., & Tardos, E. Algorithm design. Pearson/Addison-Wesley, 2006.

* DPV: Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. Algorithms, McGraw-Hill Higher
Education., 2008.

@) CS-3510: Design and Analysis of Algorithms | Summer 2022 38



http://www.cs3510.com/policies/

CS-3510:
Design and Analysis of Algorithms

Some Examples

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology
Summer 2022



Searching a Sorted Array

* Problem

* Given a sorted array, including integer numbers, and a target number, design
an algorithm which returns True if the target number 1s 1n the given array, and
False otherwise.

- Input: A=[a, a,, ..., ay] s.t. ;< a,< ...<ay, target =k

- Output: True if k € A, False if k € A

* Example
- Input: A=1[-1,0,2,5,8, 11], target =8
- Output: True

e
v




Searching a Sorted Array

* Approach 1:

* Brute force search: checking every
clement one-by-one

e In this case: Linear Search

\ 4 \ 4
* A=1[-1,0,2,5,8, 11], target =8 c A=1[-1,0,2,5,8, 11], target =8
v \ 4
« A=[-1,0,2,5,8, 11], target =8 « A=[-1,0,2,5, 8, 11], target =8
\ 4
« A=[-1,0,2,5,8, 11], target =8 « A=[-1,0,2,5,8, 11], target =8
Return True!

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

41




Searching a Sorted Array

* Approach 1:
* Brute force search: checking every element one-by-one
 In this case: Linear Search Algorithm 1: Linear Search
e T} i Input: A= {a;.as,....a,},k
Time comp leXle' O(n) Result: T'rue lor False
* Space complexity: O(1)

1 for (i = 1to n) do

2 if k == a;) then

// the target is in the array
3 return I'rue

4 end

° What lf n:l,OO0,000 and e an? 5 return False

e Can we do better?

@@ CS-3510: Design and Analysis of Algorithms | Summer 2022

42




Searching a Sorted Array

* Binary Search

* Assume the value of the mid element is less than the target, do we still need
search the left half?
* At each iteration compare the mid element of with the target:
 1f mid == target: return True
 1f mid < target: discard the left sub-array and continue to search the right sub-array
 1f mid > target: discard the right sub-array and continue to search the left sub-array

* Naturally can be implemented as a recursive algorithm.

* Recursion
* Function call itself on a smaller domain
* One or more base cases to stop the recursion

e
v




Searching a Sorted Array

* Approach 2: Binary Search

lo hi

« A=[-1,0,2,5,8, 11], target = 8 o i

s A=[-10:25,8, 11], target =8

lo m h1
* A=1[-1,0,2,5,8, 11], target =8
2 < 8 =» search right sub-array

lom hi
c A=[-10:25,8, 11], target =8

e Return True!

% CS-3510: Design and Analysis of Algorithms | Summer 2022

44




Searching a Sorted Array

* Binary Search

Algorithm 3: Binary Search (Recursive)
Input: A ={a;,as,...,a,},k,lo=1,hi=n
Result: True or False

// base case 1

1 if (lo > hi) then 2
| return False 3

3 end 4

5
// recurrence relation

4 mid < [(lo+ hi)/2]
if (an:q == k) then
// the target is in the array
return True
else if (a,,:q < k) then
| returnBinarySearch(A, k, mid+1, hi)
else L
10 ‘ return BinarySearch(A, k, lo, mid-1) 12
11 end

(3}

O© 00 N o

10

© 0 N o

13

Algorithm 2: Binary Search (Iterative)

Input: A ={a1,a2,...,a,},k
Result: True or False

lo<1
hi < n
while (lo < hi) do
mid < [(lo + hi) /2]
if (a,,;4 == k) then
// the target is in the array
return True
else if (a4 < k) then
‘ lo<mid+1
else
| hi<mid-1
end
end

return False

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

45




Searching a Sorted Array

* Binary Search
* Time complexity?
* Recursive Algorithms

Algorithm 3: Binary Search (Recursive)

Input: A ={a;,as,...,a,},k,lo=1,hi=n
Result: True or False

// base case

* Recursion tree 1 if (lo > hi) then
. ] . . 2 return False
 Substitution | Guess and prove by induction 3 elnd

* Master theorem

// recurrence relation

4 mid < [(lo+ hi)/2]

a

O 0 N o

10
11

if (a,n:q == k) then
// the target is in the array
return T'rue
else if (a,,;4 < k) then
| return BinarySearch(A, k, mid+1, hi)
else
| return BinarySearch(A, k, lo, mid-1)
end

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

46




log, n

Searching a Sorted Array

* Binary Search

* Time complexity?

* Recursive Algorithms
* Recursion tree

Substitution | Guess and prove by induction

* Master theorem

T o(1)
- S
T(n/2) T(n/?2) O(1)
T(n/4) T(n/4) T(n/4) T(n/4) O(1)
/\
/ \ \ / \ / \
\

T@/& T@/& TM/& T(n/8)

T(n/8) T(n/8) T@/8) T(n/8) O(1)

O(logn)

Algorithm 3: Binary Search (Recursive)

Input: A ={a;,as,...,a,},k,lo=1,hi=n
Result: True or False

// base case
if (lo > hi) then

| return False
end

// recurrence relation

4 mid < [(lo+ hi)/2]

a

O 0 N o

10
11

if (a,n:q == k) then
// the target is in the array
return T'rue
else if (a,,;4 < k) then
| return BinarySearch(A, k, mid+1, hi)
else
| return BinarySearch(A, k, lo, mid-1)
end

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

47




Searching a Sorted Array

* Binary Search
* Time complexity?
* Recursive Algorithms

Recursion tree

Substitution | Guess and prove by induction
Master theorem

mid is always placed at 1 + |n/2]
if k < a,,;4 we have [n/2] to search

else:
* |n/2]ifnis odd
* |n/2] —1ifniseven

Algorithm 3: Binary Search (Recursive)

Input: A ={a;,as,...,a,},k,lo=1,hi=n
Result: True or False

// base case
1 if (lo > hi) then
2 | return False
3 end

// recurrence relation
4 mid < [(lo+ hi)/2]
5 if (apmiq == k) then

// the target is in the array

6 return T'rue
7 elseif (a,,iq < k) then
8 | returnBinarySearch(A, k, mid+1, hi)
9 else
10 | return BinarySearch(A, k, lo, mid-1)
11 end

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

48




Searching a Sorted Array

* Binary Search
* Time complexity?
* Recursive Algorithms

* Recursion tree

 Substitution | Guess and prove by induction
* Master theorem

1 n=1
1+In/2l,n>1
» Assume n is a power of 2: [n/2|=n/2
 Substitution, telescope the recurrent:

n
2

* The recurrence: T(n) = {

T(n)=1+T(

Algorithm 3: Binary Search (Recursive)

Input: A ={a,as,...,an},k,lo=1,hi=n
Result: True or False

// base case
1 if (lo > hi) then
2 | return False
3 end

// recurrence relation
4 mid < [(lo+ hi)/2]
5 if (a,;q == k) then

// the target is in the array

6 return T'rue
7 else if (a,,iq < k) then
8 | returnBinarySearch(A, k, mid+1, hi)
9 else
10 | returnBinarySearch(A, k, lo, mid-1)
11 end

1+1qg(n)

):1+1+T(%)=1+1+1+T(g):1+1+ .+ 1 € 0(log(n))

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

49




Searching a Sorted Array

* Binary Search
* Time complexity?
* Recursive Algorithms
* Recursion tree
 Substitution | Guess and prove by induction

e Master theorem
* Divide-and-Conquer

* Binary search 1s a divide-and-conquer approach

Algorithm 3: Binary Search (Recursive)

Input: A ={a,as,...,an},k,lo=1,hi=n
Result: True or False

// base case
1 if (lo > hi) then
2 | return False
3 end

// recurrence relation
4 mid < [(lo+ hi)/2]
5 if (a,;q == k) then

// the target is in the array

6 return T'rue
7 else if (a,,iq < k) then
8 | returnBinarySearch(A, k, mid+1, hi)
9 else
10 | returnBinarySearch(A, k, lo, mid-1)
11 end

* Divide up problems into several subproblems (of the same type)

* Solve (conquer) each subproblem (usually recursively)
* Combine the solutions

@> CS-3510: Design and Analysis of Algorithms | Summer 2022

50




Searching a Sorted Array

* Comparing the running time
* Demo code

@) CS-3510: Design and Analysis of Algorithms | Summer 2022

51




