Exam 3–Final: Suggested Reading and Practice Problems

This exam is inclusive (including all discussed topics). Therefore, for practice, you may also check the practice problems suggested for Exam-1 and Exam-2. The following includes only the additional topics which are not covered by the previous exams.

Topic	CLRS	КТ
Shortest Path Problem	Reading: Chapter 24, Chapter 25 Practice problems: - Exercise: • 24.1-(1,3) • 24.3-(1,6) • 24.5-(5) • 25.2-(1,4,6) - Problems: 24-1	
Maximum Flow	Reading: Chapter 26 (26.1, 26.2)Practice problems:- Exercises:• 26.2-(2,4)• Figure 26.6 (Example)- Problems: 26-4	Reading: Chapter 7 <u>Practice problems:</u> - Exercise: 1,2,3,4,5
NP Completeness	Reading: Chapter 34 Practice problems: - Exercise: • 34.1-(2,4) • 34.3-(1) - Problems: 34-1, 34-3	<u>Reading:</u> Chapter 8 <u>Practice problems:</u> - Exercise: 1, 6

Notes:

- 1. Readings: You do not need to cover topics which have not been covered in the lectures.
- 2. Preparation:
 - Start with lecture slides, comprehend step-by-step solutions
 - Textbook suggested readings
 - Run the demo codes and print step-by-step computations/results
 - Homework assignments
 - Practice problems

- 3. Possible Type of Questions: (The questions are very similar to Exam 1 and Exam 2)
 - Short answer, True/False, Asymptotic notation, Algorithm types, ...
 - Algorithm time and space complexity, Master Theorem
 - Modification/variations/application of the algorithms and examples discussed in class
 - Worst case/best case of the discussed algorithms
 - Complete or write the next step of the iterations of a given solution, e.g., next step of merge-sort, Kruskal, Bellman-Ford, Floyd-Warshal, Ford-Fulkerson, etc., ...
 - Design a divide-and-conquer or dynamic programming algorithm, including writing the recurrence relation and base case
 - Design graph-related algorithms, where you can use any of the discussed algorithms, such as BFS, DFS, Kruskal, Prim, Dijkstra, ..., as block-box without proof or anything.
- 4. Further practice problems: DPV
- 5. Closed-book exam; no calculator; one page of notes
 - Letter size, both side
 - Algorithms, examples, tables, figures, etc.
 - Typed or hand-written