
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing 
Georgia Institute of Technology

Summer 2022

Exam 2: Review



Exam 2
•Date: Thursday, July 07, 2022
• Time: 03:30 pm – 05:00 pm
• Location: Klaus 2443

• Closed book; No calculator 
•One page sheet of notes
• Letter size
• Both sides
• Typed or hand-written
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No class on Tuesday (07/05)!



Roadmap
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We are here!

Next Thursday!



Exam 2

• Contents:
•Greedy algorithms
•Graph algorithms
• Definition and representation 
• Graph traversal (BFS, DFS)
• Graph traversal applications
• Minimum spanning tree
• Shortest path in weighted graph (à Final exam)
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Exam 2: Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do
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Exam 2: Greedy Choice Property 
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution 

by making locally optimal choices. 
• In other words, when we are considering which choice to make, we 

make the choice that looks best in the current problem, without 
considering results from subproblems. 
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the 

subproblem that remains. 
• Makes its first choice before solving any subproblems. 
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Exam 2: Greedy Algorithms
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Exam 2: Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal 

substructure.
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Exam 2: Greedy Algorithms
• Examples
• Interval scheduling (activity selection)
• Interval partitioning
• Schedule to minimize lateness
• …

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)
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Type of Questions in Exam-2:
- Short answers 
- Definition
- True/False questions



Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects. 
• Directed vs. undirected

• Directed graph = digraph

• Weighted vs. unweighted
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Graph Representation: Summary
• Two common ways to represent graphs
• Adjacency matrix
• Adjacency list 

• Adjacency matrix
• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of 

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used
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Graph Definitions and Terminology: Summary
• Paths and connectivity
• Connected graph, connected component
• Cycle
• DAG
• Bipartiteness
• Trees
• …
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Type of Questions in Exam-2:
- Short answers 
- Definition
- True/False questions
- Graph representation



Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order



Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties 

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)



Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited 

before moving on to vertices adjacent to some v 
• Iterative implementation. 
• Needs queue data structure

• Traversal = Exploring = Searching
(visiting vertices one-by-one)
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Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time 
• The worst case is when the graph is connected.
• Each vertex is added to the queue and removed from it exactly once 
• Each adjacency list is used exactly once
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Graph Traversal: BFS
• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 
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• An efficient graph traversal procedure 
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices 

v adjacent to u are visited before moving on to 
vertices adjacent to some v 

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS
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Nothing left in the queue à All nodes are visited à Halt

Note d always presents 
the “shortest distance” 
from the source!



Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks 

to the last alternative path. 
• No explicit storage of vertices is required (BFS needs a queue)
• However, calls for each vertex build up on the execution stack 

(recursive implementation)
• An iterative implementation is possible using an explicit stack data 

structure.

• Traversal = Exploring = Searching
(visiting vertices one-by-one)
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 
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Graph Traversal: DFS
• DFS follows a single path as far (deep) 

as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to exploreà backtrack
• No more element in the stack à Halt
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• DFS follows a single path as far (deep) 
as possible and then backtracks to 
the last alternative path 

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

Pop



Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time 
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once
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Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|) 

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|) 



BFS and DFS
• Both are graph traversal algorithms
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BFS DFS
Iterative: Queue (FIFO), 
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it 
searches the graph.

Ø We can print out the vertices on a shortest 
path from s to v, using the BFS tree

Ø We only have one distance measure 
(timestamp), denoted by d, assigned to each 
node, i.e., the time that a node visited for 
the first (and last) time.

Ø The predecessor subgraph of a depth-first 
search forms a depth-first forest 
comprising several depth-first trees. 

Ø DFS timestamps each node with two 
numbers; 
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.



Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Type of Questions in Exam-2:
- Short answers /Definition/ True/False 
- Running BFS/DFS on a given graph (show your steps)
- BFS/DFS trees, discovery/finishing times, … 



Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order



Exam 2: Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Connectivity 
problem can be 
solved by both 

BFS and DFS



Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to 

London (LHR)? 
• Flights:
• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)
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JFK

ATL

LH
R

LA
X

SFO

source

destination

• Define the corresponding 
graph

• Run BFS or DFS from the 
source node, i.e., the node 
associated with ATL

• During the traversal check 
if the destination (LHR) is a 
neighbor of the current 
node

💻 Demo code time!

Ex. 
1



Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0 

represent water and 1 represent land, design an algorithm computing 
the number islands. An island includes one or more horizontally or 
vertically cells surrounded by water.
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Each cell = graph node

grid = 
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

We know the nodes (= grid 
cells) and we know the 
neighbors (the relationship), 
so we can skip the graph 
definition part!

💻 Demo code!

Ex. 
2



BFS: Shortest paths
• BFS intuition. Explore outward from s in all possible directions, 

adding nodes one “layer” at a time. 

• Theorem. For each i, Li consists of all nodes at distance exactly i from 
s. There is a path from s to t if and only if t appears in some layer. 
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BFS: Shortest paths
• Property. Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of 

G. Then, the levels of u and v differ by at most 1. 
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Lemma 1



BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths

Let G = (𝑉, 𝐸) be a directed/undirected graph, and BFS is run on G
from a given source s ∈ 𝑉. Then, during the execution,
• BFS discovers every vertex v ∈ 𝑉 that is reachable from the source s, and 
• Upon termination, 𝑑 = 𝛿 𝑠, 𝑣 for all v ∈ 𝑉, where d is the distance computed 

by BFS.
• Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest 

paths from s to v is a shortest path from s to 𝜋(v) followed by edge (𝜋 v , v).
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BFS: Testing Bipartiteness
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies 
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go 
between the two sets V1 and V2. 

• Def. An undirected graph G = (V, E) is bipartite if the nodes can be 
colored blue or red such that every edge has one blue and one red end. 
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V1

V2

bipartite graph = 2-colorable graph



BFS: Testing Bipartiteness (KT 3.4)

• Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.
• Proof. Not possible to 2-color the odd-length cycle, let alone G. 
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BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers 

produced by BFS starting at node s. Exactly one of the following 
holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite. 
2. An edge of G joins two nodes of the same layer, and G contains an odd-

length cycle (and hence is not bipartite). 
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L1 L2 L3 L1 L2 L3

Case 1 Case 2



BFS: Testing Bipartiteness
• We can modify the BFS algorithm to color each neighbor with the 

opposite color when it explores a node. 
• If a neighbor has already been colored (i.e., visited), and has the same 

color, then return false. 
• If the BFS can traverse the entire graph and color all nodes, then return 

true.
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Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains 

no directed cycles. 

• Def. A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, ..., vn so that for every edge (vi, vj) we have i < j. 
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Topological ordering = Topological sort (Top-Sort)



Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains no directed cycles. 
• Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v1, v2, ..., vn so 

that for every edge (vi, vj) we have i < j. 

• Topological Ordering à Precedence Constraints
• Precedence constraints: edge (vi, vj) means task vi must occur before vj. 

• Applications
• Course prerequisite graph: course vi must be taken before vj
• Compilation: module vi must be compiled before vj
• Pipeline of computing jobs: output of job vi needed to determine input of job vj
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Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG. 
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one? 

• If G is a DAG, then G has a topological ordering. 
• If G is a DAG, then G has a node with no entering edges. 

G is a DAG ó G has a topological ordering  

• Algorithm finds a topological order (topological sort) in O(m + n) time. 
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Directed Acyclic Graphs (DAG)
• Algorithm finds a topological order in O(m + n) time 

• TOPOLOGICAL-SORT
• Call DFS to compute finishing times for each vertex v.
• As each vertex is finished, insert it onto the front of a 
linked list 

• Return the linked list of vertices 

• Pf. (CLRS, Theorem 22.12)

• Note topological ordering can also be obtained using “Kahn's algorithm”, which 
is BFS approach starting from a node with no entering edge, in O(m + n) time.
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Strongly Connected Component (SCC)
• Problem: Decomposing a directed graph into its strongly connected 

components 
• A classic application of DFS.
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• The strongly connected components of a directed graph are the equivalence
classes of vertices under the “are mutually reachable” relation.

• Given directed graph G=(V, E) an SCC is a maximal set of vertices C ⊆ V
such that for every pair of vertices u and v in C , we have both u↝v and v↝u;
that is, vertices u and v are reachable from each other.

• A directed graph is strongly connected if it has only one strongly connected
component.



Strongly Connected Component (SCC)
• Linear-time (Θ(|𝑉| + |𝐸|)) algorithm to compute the strongly 

connected components of a directed graph G = (𝑉, 𝐸) using two 
depth-first searches, one on G and one on G!.

• G! = (𝑉, 𝐸"), where 𝐸" = 𝑢, 𝑣 𝑣, 𝑢 ∈ 𝐸
In other words, same graph except all edges are reversed.
• Adjacency list representation: 𝐺" can be obtained in O(|𝑉| + |𝐸|)

• Observation: G and G! have the same SCC’s. (u and v are reachable 
from each other in G if and only if reachable from each other in G!.) 
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Strongly Connected Component (SCC)

• Lemma
Let C and C′ be distinct SCCs in G = (V, E). 
Suppose there is an edge (u, v) ∈ E such that 
u ∈ C and v ∈ C′. Then f(C)  >  f(C′).
• Corollary-1 Suppose there is an edge (u,v) ∈ ET, where u ∈ C and v ∈

C′. Then f(C) <  f(C′).
• Corollary-2 Suppose f(C)  >  f(C′). Then, there  cannot be an edge from 

C′ to C in GT.
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STRONGLY-CONNECTED-COMPONENTS (G)
1. DFS(G) to compute f(u)
2. Compute GT

3. Call DFS(GT) in the order of decreasing f(u) (topology ordering of G)
4. Each tree in the depth-first forest formed in line 3 is a strongly connected component 



Strongly Connected Component (SCC)
• When we start the second DFS on GT:

• We begin with SCC C such that f(C) is maximum.
• So, the second DFS starts from some x ∈ C, which visits all C vertices. 
• Corollary-2 says that since f(C) > f(C′) for all C′ ≠ C, there are no edges from C to C′ in GT. 

Therefore, the second DFS only visits vertices in C, i.e., the depth-first tree rooted at x contains 
exactly the vertices of C. 

• The next root chosen in the second DFS is in SCC C′ such that f (C′) is maximum 
over all SCCs other than C. DFS visits all vertices in C′, but the only edges out of C′ 
go to C, which we have already visited. Therefore, the only tree edges will be to 
vertices in C′.
• We can continue the process. Each time we choose a root based on the topological 

order, where we have only edges to the current SCC nodes (and the earlier ones but 
they are already visited), and there is no edge to the next SCC (Corollary-2); 
therefore, the DFS only visits the current SCC nodes.
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Exam 2: Graph
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Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness 

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order



Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Type of Questions in Exam-2:
- Short answers /Definition/ True/False 
- Designing (explaining) an algorithm for a graph-related problem

- Detecting that the problem is a graph-related problem (Explain how we can 
formulate the given problem as a graph problem, and how the given information can 
be represented as a graph, i.e., adjacency list, adjacency matrix, etc.

- Which one of the discussed algorithms (DFS, BFS, testing bipartiteness, SCC, 
topology ordering can be employed to solve the given problem and justify (explain) 
the correctness of your approach.

- Discuss the overall time complexity. (The running time takes to create the 
corresponding graph and the running time takes to solve the problem)



Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness 
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components
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• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm



Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance. 
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 

of G.
• Tree T spans the graph G
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Minimum Spanning Tree (MST)
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree 
• Spanning tree T for G such that the sum                                  is minimized
• Approach: “Greedy choice” 
• Algorithms:
• Kruskal
• Prim
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Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method, 

which grows the minimum spanning tree one edge at a time. 
• The generic method manages a set of edges A, maintaining the 

following loop invariant: 
• Prior to each iteration, A is a subset of some minimum spanning tree. 

• At each step, we determine an edge 𝑢, 𝑣 that we can add to A 
without violating this invariant 𝐴 ∪ 𝑢, 𝑣 is also a subset of an MST
• An edge is safe edge if adding it to A will not violate the invariant.
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Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 . 

• With this definition, we say
• An edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 − 𝑆 if one of this endpoints is in 𝑆, and 

the other in 𝑉 − 𝑆
• A cut respects a set A of edges if no edge in A crosses the cut. 
• An edge is a light edge crossing a cut if its weight is the minimum of any edge 

crossing the cut. 
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Generic-MST
• Theorem:
Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued 
weight function w defined on E. Let A be a subset of E that is included 
in some minimum spanning tree for 𝐺, let 𝑆, 𝑉 − 𝑆 be any cut of 
𝐺 that respects 𝐴, and let (𝑢, 𝑣) be a light edge crossing this cut. Then 
edge (𝑢, 𝑣) is safe for 𝐴.
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Generic-MST
• Notes
• The set A is always acyclic.
• At any point G" = (𝑉, 𝐴) is a forest
• At first when 𝐴 = 𝜙, we have |V| trees

in the forest G", each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4)  runs for |V|-1 times to find the edges required to form 

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).
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Generic-MST
• Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued 

weight function w defined on E. Let A be a subset of E that is included 
in some minimum spanning tree for 𝐺,
• [Theorem:] let 𝑆, 𝑉 − 𝑆 be any cut of 𝐺 that respects 𝐴, and let 
(𝑢, 𝑣) be a light edge crossing this cut. Then edge (𝑢, 𝑣) is safe for 𝐴.
• [Corollary:] let 𝐶 = (𝑉$ , 𝐸$) be a connected component (tree) in the 

forest G% = (𝑉, 𝐴). If (𝑢, 𝑣) is a light edge connecting 𝐶 to some other 
component in G%, Then edge (𝑢, 𝑣) is safe for 𝐴.
• Pf. Cut 𝑉# , 𝑉 − 𝑉# respects 𝐴, and (𝑢, 𝑣) is a light edge for this cut à safe
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MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph. 
• The safe edge added to A is always a least-weight edge in the graph that 

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree. 
• The safe edge added to A is always a least-weight edge connecting the tree to a 

vertex not in the tree. 
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MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 
of G.

• Tree T spans the graph G

• Minimum spanning tree 
• Spanning tree T for G such that the sum                               is minimized 
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Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O( E log V )

Prim Greedy Priority Queue (Binary Min-Heap) O( E log V )



MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree 
of G.

• Tree T spans the graph G

• Minimum spanning tree 
• Spanning tree T for G such that the sum                               is minimized 
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Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O( E log V )

Prim Greedy Priority Queue (Binary Min-Heap) O( E log V )

Type of Questions in Exam-2:
- Short answers /Definition/ True/False 
- Running Kruskal’s/Prim’s algorithms on a given graph (show your steps)
- Proving some properties of minimum spanning trees.

- Similar to HW4/Q3
- Proof by contradiction (assume the given statement is not correct, 

then show this assumption will cause some contradictions à Thus, 
the given statement is true.)



Exam 2: Practice Problems
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