
CS-3510:
Design and Analysis of Algorithms

Instructor: Shahrokh Shahi

College of Computing
Georgia Institute of Technology

Summer 2022

Exam 2: Review

Exam 2
•Date: Thursday, July 07, 2022
• Time: 03:30 pm – 05:00 pm
• Location: Klaus 2443

• Closed book; No calculator
•One page sheet of notes
• Letter size
• Both sides
• Typed or hand-written

CS-3510: Design and Analysis of Algorithms | Summer 2022 2

No class on Tuesday (07/05)!

Roadmap

3CS-3510: Design and Analysis of Algorithms | Summer 2022

We are here!

Next Thursday!

Exam 2

• Contents:
•Greedy algorithms
•Graph algorithms
• Definition and representation
• Graph traversal (BFS, DFS)
• Graph traversal applications
• Minimum spanning tree
• Shortest path in weighted graph (à Final exam)

CS-3510: Design and Analysis of Algorithms | Summer 2022 4

Exam 2: Greedy Algorithms
• Build the solution step-by-step

• At each step, make a decision that is locally optimal

• Never look back and hope for the best!

• Do NOT always yield optimal solutions, but for many problems they do

CS-3510: Design and Analysis of Algorithms | Summer 2022 5

Exam 2: Greedy Choice Property
• Greedy choice = locally optimal choice
• Greedy-choice property: we can assemble a globally optimal solution

by making locally optimal choices.
• In other words, when we are considering which choice to make, we

make the choice that looks best in the current problem, without
considering results from subproblems.
(The main difference with dynamic programming)
• Make whatever choice seems best at the moment and then solve the

subproblem that remains.
• Makes its first choice before solving any subproblems.

CS-3510: Design and Analysis of Algorithms | Summer 2022 6

Exam 2: Greedy Algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 7

problem

subproblem

Subsub
problem

Subsub
problem

Divide-and-Conquer Dynamic Programming Greedy Approach

problem

subproblem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

Subsub
problem

subproblem

Subsub
problem

Subsub
problem

problem

subproblem

Subsub
problem

Optimal substructure
But only one subproblem

Exam 2: Greedy Algorithms

• Seems “easier” than dynamic programming?

• Two major “questions/problems”:

• What is the best/correct greedy choice to make?

• How can we prove that the greedy algorithm yields an optimal solution?

• When is using the greedy approach a good idea?

• Greedy can be optimal when the problem shows an especially nice optimal

substructure.

CS-3510: Design and Analysis of Algorithms | Summer 2022 8

problem

subproblem

Subsub
problem

Exam 2: Greedy Algorithms
• Examples
• Interval scheduling (activity selection)
• Interval partitioning
• Schedule to minimize lateness
• …

• Applications in Graph (next week)
• Kruskal’s algorithm (minimum spanning tree)
• Prim’s algorithm (minimum spanning tree)
• Dijkstra’s algorithm (shortest path)

CS-3510: Design and Analysis of Algorithms | Summer 2022 9

Type of Questions in Exam-2:
- Short answers
- Definition
- True/False questions

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 10

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph Properties and Terminology Review
• Notation. G = (V, E)
・V = nodes (or vertices). {0, 1, 2, … n-1}
・E = edges (or arcs) between pairs of nodes. {e1, e2, … em} where ei = (vi, vj)
・Captures pairwise relationship between objects.
• Directed vs. undirected

• Directed graph = digraph

• Weighted vs. unweighted

CS-3510: Design and Analysis of Algorithms | Summer 2022 11

W01=W10=10

W23=W32=25

W01=10

W23=25

W12
=15 W13=20 W13=W31=20W12

=W21
=15

Directed
Unweighted

Directed
Weighted

Undirected
Unweighted

Undirected
Weighted

Graph Representation: Summary
• Two common ways to represent graphs
• Adjacency matrix
• Adjacency list

• Adjacency matrix
• Space: n2 elements for n vertices
• Easy to check if a link exists between two vertices

• Adjacency list
• More common representation: most large real-world graphs are sparse
• Space: Number of edges [2*(number of edges) if undirected] + number of

vertices, i.e., (m+n) or (2m+n)
• Linked list implementation is typically used

CS-3510: Design and Analysis of Algorithms | Summer 2022 12

Graph Definitions and Terminology: Summary
• Paths and connectivity
• Connected graph, connected component
• Cycle
• DAG
• Bipartiteness
• Trees
• …

CS-3510: Design and Analysis of Algorithms | Summer 2022 13

Type of Questions in Exam-2:
- Short answers
- Definition
- True/False questions
- Graph representation

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 14

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 15

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Graph Traversal
• Traversal = Exploring = Searching
• A graph needs to be traversed in order to determine some properties

• Breadth-first search (BFS)
• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth-first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 16

Implementation Data Structure

BFS Iterative Queue (FIFO)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices v adjacent to u are visited

before moving on to vertices adjacent to some v
• Iterative implementation.
• Needs queue data structure

• Traversal = Exploring = Searching
(visiting vertices one-by-one)

CS-3510: Design and Analysis of Algorithms | Summer 2022 17

Graph Traversal: BFS
• BFS runs in O(|V| + |E|) time
• The worst case is when the graph is connected.
• Each vertex is added to the queue and removed from it exactly once
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 18

Graph Traversal: BFS
• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

CS-3510: Design and Analysis of Algorithms | Summer 2022 19

A

E
B

C
D

G

F

distance from source
parent

white := unvisited node

gray := visited node

black := visited & all
unvisited neighbors
added to the queue

• An efficient graph traversal procedure
• BFS starts from a source vertex “s”
• At each vertex u, all neighbors, i.e., vertices

v adjacent to u are visited before moving on to
vertices adjacent to some v

• Queue = {A, B, C, F, D, E, G}
• Visited = {A, B, C, F, D, E, G}

Graph Traversal: BFS

CS-3510: Design and Analysis of Algorithms | Summer 2022 20

A

E

B

C

D
G

F

Source: “s”

d = 1

d = 1

d = 1

d = 0

d = 2

d = 2
d = 3

Nothing left in the queue à All nodes are visited à Halt

Note d always presents
the “shortest distance”
from the source!

Graph Traversal: DFS
• DFS follows a single path as far (deep) as possible and then backtracks

to the last alternative path.
• No explicit storage of vertices is required (BFS needs a queue)
• However, calls for each vertex build up on the execution stack

(recursive implementation)
• An iterative implementation is possible using an explicit stack data

structure.

• Traversal = Exploring = Searching
(visiting vertices one-by-one)

CS-3510: Design and Analysis of Algorithms | Summer 2022 21

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

CS-3510: Design and Analysis of Algorithms | Summer 2022 22

A

E
B

C

D
G

F

Graph Traversal: DFS
• DFS follows a single path as far (deep)

as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}
• No more path to exploreà backtrack
• No more element in the stack à Halt

CS-3510: Design and Analysis of Algorithms | Summer 2022 23

A

E

B

C

D
G

F

discovery | finishing time

0 |13

1| 12

2| 11

3 |10

4 |9

6 |7

5 |8

• DFS follows a single path as far (deep)
as possible and then backtracks to
the last alternative path

• Stack = {A, B, C, D, E, G, F}
• Visited = {A, B, C, D, E, G, F}

Pop

Graph Traversal: DFS
• DFS also runs in O(|V| + |E|) time
• DFS is called exactly once per vertex
• Each adjacency list is used exactly once

CS-3510: Design and Analysis of Algorithms | Summer 2022 24

Implementation Data Structure Running Time

BFS Iterative Queue (FIFO) O(|V| + |E|)

DFS Recursive

Iterative

(not explicitly required à
execution stack)

Stack (LIFO)

O(|V| + |E|)

BFS and DFS
• Both are graph traversal algorithms

CS-3510: Design and Analysis of Algorithms | Summer 2022 25

BFS DFS
Iterative: Queue (FIFO),
Time:O(|V| + |E|), Space: O(|V|)

Recursive: (execution stack), Iterative: Stack(LIFO)
Time:O(|V| + |E|), Space: O(|V|)

Ø BFS builds a breadth-first tree as it
searches the graph.

Ø We can print out the vertices on a shortest
path from s to v, using the BFS tree

Ø We only have one distance measure
(timestamp), denoted by d, assigned to each
node, i.e., the time that a node visited for
the first (and last) time.

Ø The predecessor subgraph of a depth-first
search forms a depth-first forest
comprising several depth-first trees.

Ø DFS timestamps each node with two
numbers;
d (discovery time) and f (finishing time).

Ø The timestamps have parenthesis structure.

Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 26

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Type of Questions in Exam-2:
- Short answers /Definition/ True/False
- Running BFS/DFS on a given graph (show your steps)
- BFS/DFS trees, discovery/finishing times, …

Breadth first search (BFS) Depth first search (DFS)

Exam 2: Graph traversal applications

CS-3510: Design and Analysis of Algorithms | Summer 2022 27

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Exam 2: Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 28

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Connectivity
problem can be
solved by both

BFS and DFS

Graph Traversal: Connected Component
• Ex1: Given a set of flight plans, can we travel from Atlanta (ATL) to

London (LHR)?
• Flights:
• (JFK, ATL)
• (ATL, LAX)
• (LAX, SFO)
• (JFK, SFO)
• (SFO, JFK)
• (JFK, LHR)

CS-3510: Design and Analysis of Algorithms | Summer 2022 29

JFK

ATL

LH
R

LA
X

SFO

source

destination

• Define the corresponding
graph

• Run BFS or DFS from the
source node, i.e., the node
associated with ATL

• During the traversal check
if the destination (LHR) is a
neighbor of the current
node

💻 Demo code time!

Ex.
1

Graph Traversal: Connected Component
• Ex2 [Grid problems]: Given an m-by-n 2D binary matrix in which 0

represent water and 1 represent land, design an algorithm computing
the number islands. An island includes one or more horizontally or
vertically cells surrounded by water.

CS-3510: Design and Analysis of Algorithms | Summer 2022 30

Each cell = graph node

grid =
Neighbors of grid[i][j]:
• grid[i-1][j]
• grid[i+1][j]
• grid[i][j-1]
• grid[i][j+1]

We know the nodes (= grid
cells) and we know the
neighbors (the relationship),
so we can skip the graph
definition part!

💻 Demo code!

Ex.
2

BFS: Shortest paths
• BFS intuition. Explore outward from s in all possible directions,

adding nodes one “layer” at a time.

• Theorem. For each i, Li consists of all nodes at distance exactly i from
s. There is a path from s to t if and only if t appears in some layer.

CS-3510: Design and Analysis of Algorithms | Summer 2022 31

BFS: Shortest paths
• Property. Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of

G. Then, the levels of u and v differ by at most 1.

CS-3510: Design and Analysis of Algorithms | Summer 2022 32

Lemma 1

BFS: Shortest paths
• Theorem: Correctness of BFS; Shortest Paths

Let G = (𝑉, 𝐸) be a directed/undirected graph, and BFS is run on G
from a given source s ∈ 𝑉. Then, during the execution,
• BFS discovers every vertex v ∈ 𝑉 that is reachable from the source s, and
• Upon termination, 𝑑 = 𝛿 𝑠, 𝑣 for all v ∈ 𝑉, where d is the distance computed

by BFS.
• Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest

paths from s to v is a shortest path from s to 𝜋(v) followed by edge (𝜋 v , v).

CS-3510: Design and Analysis of Algorithms | Summer 2022 33

BFS: Testing Bipartiteness
• Def. A bipartite graph is an undirected graph G = (V, E) in which V

can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies
either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 . That is, all edges go
between the two sets V1 and V2.

• Def. An undirected graph G = (V, E) is bipartite if the nodes can be
colored blue or red such that every edge has one blue and one red end.

CS-3510: Design and Analysis of Algorithms | Summer 2022 34

V1

V2

bipartite graph = 2-colorable graph

BFS: Testing Bipartiteness (KT 3.4)

• Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.
• Proof. Not possible to 2-color the odd-length cycle, let alone G.

CS-3510: Design and Analysis of Algorithms | Summer 2022 35

BFS: Testing Bipartiteness
• Lemma. Let G be a connected graph, and let L0, ..., Lk be the layers

produced by BFS starting at node s. Exactly one of the following
holds:

1. No edge of G joins two nodes of the same layer, and G is bipartite.
2. An edge of G joins two nodes of the same layer, and G contains an odd-

length cycle (and hence is not bipartite).

CS-3510: Design and Analysis of Algorithms | Summer 2022 36

L1 L2 L3 L1 L2 L3

Case 1 Case 2

BFS: Testing Bipartiteness
• We can modify the BFS algorithm to color each neighbor with the

opposite color when it explores a node.
• If a neighbor has already been colored (i.e., visited), and has the same

color, then return false.
• If the BFS can traverse the entire graph and color all nodes, then return

true.

CS-3510: Design and Analysis of Algorithms | Summer 2022 37

Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains

no directed cycles.

• Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, ..., vn so that for every edge (vi, vj) we have i < j.

CS-3510: Design and Analysis of Algorithms | Summer 2022 38

Topological ordering = Topological sort (Top-Sort)

Directed Acyclic Graphs (DAG)
• Def. A directed acyclic graphs (DAG) is a directed graph that contains no directed cycles.
• Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v1, v2, ..., vn so

that for every edge (vi, vj) we have i < j.

• Topological Ordering à Precedence Constraints
• Precedence constraints: edge (vi, vj) means task vi must occur before vj.

• Applications
• Course prerequisite graph: course vi must be taken before vj
• Compilation: module vi must be compiled before vj
• Pipeline of computing jobs: output of job vi needed to determine input of job vj

CS-3510: Design and Analysis of Algorithms | Summer 2022 39

Directed Acyclic Graphs (DAG)
• If G has a topological order, then G is a DAG.
• Q. Does every DAG have a topological ordering?
• Q. If so, how do we compute one?

• If G is a DAG, then G has a topological ordering.
• If G is a DAG, then G has a node with no entering edges.

G is a DAG ó G has a topological ordering

• Algorithm finds a topological order (topological sort) in O(m + n) time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 40

Directed Acyclic Graphs (DAG)
• Algorithm finds a topological order in O(m + n) time

• TOPOLOGICAL-SORT
• Call DFS to compute finishing times for each vertex v.
• As each vertex is finished, insert it onto the front of a
linked list

• Return the linked list of vertices

• Pf. (CLRS, Theorem 22.12)

• Note topological ordering can also be obtained using “Kahn's algorithm”, which
is BFS approach starting from a node with no entering edge, in O(m + n) time.

CS-3510: Design and Analysis of Algorithms | Summer 2022 41

Strongly Connected Component (SCC)
• Problem: Decomposing a directed graph into its strongly connected

components
• A classic application of DFS.

CS-3510: Design and Analysis of Algorithms | Summer 2022 42

• The strongly connected components of a directed graph are the equivalence
classes of vertices under the “are mutually reachable” relation.

• Given directed graph G=(V, E) an SCC is a maximal set of vertices C ⊆ V
such that for every pair of vertices u and v in C , we have both u↝v and v↝u;
that is, vertices u and v are reachable from each other.

• A directed graph is strongly connected if it has only one strongly connected
component.

Strongly Connected Component (SCC)
• Linear-time (Θ(|𝑉| + |𝐸|)) algorithm to compute the strongly

connected components of a directed graph G = (𝑉, 𝐸) using two
depth-first searches, one on G and one on G!.

• G! = (𝑉, 𝐸"), where 𝐸" = 𝑢, 𝑣 𝑣, 𝑢 ∈ 𝐸
In other words, same graph except all edges are reversed.
• Adjacency list representation: 𝐺" can be obtained in O(|𝑉| + |𝐸|)

• Observation: G and G! have the same SCC’s. (u and v are reachable
from each other in G if and only if reachable from each other in G!.)

CS-3510: Design and Analysis of Algorithms | Summer 2022 43

Strongly Connected Component (SCC)

• Lemma
Let C and C′ be distinct SCCs in G = (V, E).
Suppose there is an edge (u, v) ∈ E such that
u ∈ C and v ∈ C′. Then f(C) > f(C′).
• Corollary-1 Suppose there is an edge (u,v) ∈ ET, where u ∈ C and v ∈

C′. Then f(C) < f(C′).
• Corollary-2 Suppose f(C) > f(C′). Then, there cannot be an edge from

C′ to C in GT.

CS-3510: Design and Analysis of Algorithms | Summer 2022 44

STRONGLY-CONNECTED-COMPONENTS (G)
1. DFS(G) to compute f(u)
2. Compute GT

3. Call DFS(GT) in the order of decreasing f(u) (topology ordering of G)
4. Each tree in the depth-first forest formed in line 3 is a strongly connected component

Strongly Connected Component (SCC)
• When we start the second DFS on GT:

• We begin with SCC C such that f(C) is maximum.
• So, the second DFS starts from some x ∈ C, which visits all C vertices.
• Corollary-2 says that since f(C) > f(C′) for all C′ ≠ C, there are no edges from C to C′ in GT.

Therefore, the second DFS only visits vertices in C, i.e., the depth-first tree rooted at x contains
exactly the vertices of C.

• The next root chosen in the second DFS is in SCC C′ such that f (C′) is maximum
over all SCCs other than C. DFS visits all vertices in C′, but the only edges out of C′
go to C, which we have already visited. Therefore, the only tree edges will be to
vertices in C′.
• We can continue the process. Each time we choose a root based on the topological

order, where we have only edges to the current SCC nodes (and the earlier ones but
they are already visited), and there is no edge to the next SCC (Corollary-2);
therefore, the DFS only visits the current SCC nodes.

CS-3510: Design and Analysis of Algorithms | Summer 2022 45

Exam 2: Graph

CS-3510: Design and Analysis of Algorithms | Summer 2022 46

Topological sorting
Strongly connected components

Shortest path (unweighted graphs)
Testing bipartiteness

Graph traversal

Breadth first search (BFS) Depth first search (DFS)

Connectivity problem
(Connected components)

Tree traversal
• In-order, Pre-order, post-order

Tree traversal
• level-order

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 47

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 48

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Type of Questions in Exam-2:
- Short answers /Definition/ True/False
- Designing (explaining) an algorithm for a graph-related problem

- Detecting that the problem is a graph-related problem (Explain how we can
formulate the given problem as a graph problem, and how the given information can
be represented as a graph, i.e., adjacency list, adjacency matrix, etc.

- Which one of the discussed algorithms (DFS, BFS, testing bipartiteness, SCC,
topology ordering can be employed to solve the given problem and justify (explain)
the correctness of your approach.

- Discuss the overall time complexity. (The running time takes to create the
corresponding graph and the running time takes to solve the problem)

Exam 2: Graph
• Graph definition and representation

• Adjacency matrix
• Adjacency list

• Graph traversal
• Breadth first search (BFS)

• Shortest path (unweighted graphs)
• Testing bipartiteness
• Tree traversal (level-order)
• Connected components

• Depth first search (DFS)
• Topological sorting
• Tree traversal (in-order, pre-order, post-order)
• Connected components

CS-3510: Design and Analysis of Algorithms | Summer 2022 49

• Graph problems/algorithms
• Minimum spanning tree (MST)

• Kruskal (greedy)
• Prim (greedy)

• Shortest path (directed weighted graphs)
• Dijkstra (greedy)
• Bellman-Ford (dynamic programming)
• Floyd-Warshall (dynamic programming)

• Flow network
• Max-flow min-cut theorem
• Ford-Fulkerson algorithm

Minimum Spanning Tree
• Weighted graphs
• Each edge has an associated weight, cost, or distance.
• Edge (u, v)à w(u, v)

• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

CS-3510: Design and Analysis of Algorithms | Summer 2022 50

Minimum Spanning Tree (MST)
• Spanning tree
• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree

of G.
• Tree T spans the graph G

• Minimum spanning tree = Minimum-weight spanning tree
• Spanning tree T for G such that the sum is minimized
• Approach: “Greedy choice”
• Algorithms:
• Kruskal
• Prim

CS-3510: Design and Analysis of Algorithms | Summer 2022 51

Growing a Minimum Spanning Tree
• This greedy strategy is captured by the following generic method,

which grows the minimum spanning tree one edge at a time.
• The generic method manages a set of edges A, maintaining the

following loop invariant:
• Prior to each iteration, A is a subset of some minimum spanning tree.

• At each step, we determine an edge 𝑢, 𝑣 that we can add to A
without violating this invariant 𝐴 ∪ 𝑢, 𝑣 is also a subset of an MST
• An edge is safe edge if adding it to A will not violate the invariant.

CS-3510: Design and Analysis of Algorithms | Summer 2022 52

Some Definitions
• Cut
• A cut 𝑆, 𝑉 − 𝑆 of an undirected graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 .

• With this definition, we say
• An edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 − 𝑆 if one of this endpoints is in 𝑆, and

the other in 𝑉 − 𝑆
• A cut respects a set A of edges if no edge in A crosses the cut.
• An edge is a light edge crossing a cut if its weight is the minimum of any edge

crossing the cut.

CS-3510: Design and Analysis of Algorithms | Summer 2022 53

Generic-MST
• Theorem:
Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for 𝐺, let 𝑆, 𝑉 − 𝑆 be any cut of
𝐺 that respects 𝐴, and let (𝑢, 𝑣) be a light edge crossing this cut. Then
edge (𝑢, 𝑣) is safe for 𝐴.

CS-3510: Design and Analysis of Algorithms | Summer 2022 54

Generic-MST
• Notes
• The set A is always acyclic.
• At any point G" = (𝑉, 𝐴) is a forest
• At first when 𝐴 = 𝜙, we have |V| trees

in the forest G", each a tree of one vertices
• At each iteration, the number of trees is reduced by one.
• While loop (line 2-4) runs for |V|-1 times to find the edges required to form

the minimum spanning tree.
• The method terminates when we have one tree (clearly, with |V|-1 edges).

CS-3510: Design and Analysis of Algorithms | Summer 2022 55

Generic-MST
• Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for 𝐺,
• [Theorem:] let 𝑆, 𝑉 − 𝑆 be any cut of 𝐺 that respects 𝐴, and let
(𝑢, 𝑣) be a light edge crossing this cut. Then edge (𝑢, 𝑣) is safe for 𝐴.
• [Corollary:] let 𝐶 = (𝑉$, 𝐸$) be a connected component (tree) in the

forest G% = (𝑉, 𝐴). If (𝑢, 𝑣) is a light edge connecting 𝐶 to some other
component in G%, Then edge (𝑢, 𝑣) is safe for 𝐴.
• Pf. Cut 𝑉# , 𝑉 − 𝑉# respects 𝐴, and (𝑢, 𝑣) is a light edge for this cut à safe

CS-3510: Design and Analysis of Algorithms | Summer 2022 56

MST Algorithms
• Kruskal’s algorithm
• The set A is a forest whose vertices are all those of the given graph.
• The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. (so it is not creating a loop)

• Prim’s algorithm
• The set A forms a single tree.
• The safe edge added to A is always a least-weight edge connecting the tree to a

vertex not in the tree.

CS-3510: Design and Analysis of Algorithms | Summer 2022 57

MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree
of G.

• Tree T spans the graph G

• Minimum spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 58

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(E log V)

Prim Greedy Priority Queue (Binary Min-Heap) O(E log V)

MST: Summary
• Spanning tree

• Given graph G = (V, E), a tree 𝑇 = 𝑉, 𝐸! such that 𝐸! ⊆ 𝐸 is a spanning tree
of G.

• Tree T spans the graph G

• Minimum spanning tree
• Spanning tree T for G such that the sum is minimized

CS-3510: Design and Analysis of Algorithms | Summer 2022 59

Algorithm Paradigm Data Structure Used Running Time
Kruskal Greedy Disjoint-Set (Union-Find) O(E log V)

Prim Greedy Priority Queue (Binary Min-Heap) O(E log V)

Type of Questions in Exam-2:
- Short answers /Definition/ True/False
- Running Kruskal’s/Prim’s algorithms on a given graph (show your steps)
- Proving some properties of minimum spanning trees.

- Similar to HW4/Q3
- Proof by contradiction (assume the given statement is not correct,

then show this assumption will cause some contradictions à Thus,
the given statement is true.)

Exam 2: Practice Problems

CS-3510: Design and Analysis of Algorithms | Summer 2022 60

Course website

