
CS 3510 – Assignment 1

Due Friday, May 27, 2022 at 11:59pm on Canvas

Instructor: Shahrokh Shahi

• Please type your answers (LATEX is highly recommended) and upload a single PDF file named
<Your-GT-Account>.pdf, e.g., GBurdell3.pdf, including all your answers. You can submit multi-
ple times. Canvas keeps track of the submissions and append a version number when you re-submit.
We always grade your most recent submissions.

• Please read the policies, and do not forget to acknowledge your collaborators and cite your references.

• If you do not understand a question, please ask on Piazza or come to office hours well ahead of the
due date.

1

http://www.cs3510.com/
http://www.cs3510.com/policies/

Problem 1 — Asymptotic Notations (10 pts)

1. (5 pts) For each pair of functions f and g, write whether f is in O(g), Ω(g), or Θ(g), whichever is most
accurate. Just write the asymptotic notation; no explanation is required.

(a) f = (n+ 1000)4, g = 1000n4 − 2n3 + 1

(b) f = log1000 n, g = log2 n

(c) f = n1000, g = n2

(d) f = 2n, g = n!

(e) f = (n+ 1)3, g = 4log2 n (Hint: alogb c = clogb a)

2. (5 pts) Use the mathematical definition of big-O notation to prove the following additivity properties:
f , g and h are functions of input size n. Prove that if f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h).

Solution

1. (a) f = (n+ 1000)4, g = 1000n4 − 2n3 + 1 f ∈ Θ(g)

(b) f = log1000 n, g = log2 n f ∈ Θ(g)

(c) f = n1000, g = n2 f ∈ Ω(g)

(d) f = 2n, g = n! f ∈ O(g)

(e) f = (n+ 1)3, g = 4log2 n f ∈ Ω(g) Note: 4log2 n = nlog2 4 = n2

2. Proof:

• f ∈ O(h)⇒ there exist a constant c1 > 0 and n1 ≥ 0, such that for any n ≥ n1, f(n) ≤ c1h(n).

• g ∈ O(h)⇒ there exist a constant c2 > 0 and n2 ≥ 0, such that for any n ≥ n2, g(n) ≤ c2h(n).

• Let n3 = max(n1, n2), then for any n ≥ n3, we can write:

f(n) ≤ c1h(n) (1)

and
g(n) ≤ c2h(n) (2)

• From 1 and 2, we have:
There exist a constant c = c1 + c2 > 0 and n3 = max(n1, n2), such that for any n ≥ n3,
f(n) + g(n) ≤ (c1 + c2)h(n). Thus, f + g ∈ O(h).

2

Problem 2 — Divide and Conquer (20 pts)

You are given a sorted array S = [s1, s2, . . . , sn] with n distinct integers, i.e., si < si+1, for all 1 ≤ i < n.
Design a divide-and-conquer algorithm to decide whether there exists an index k such that S[k] = k. If such
an element exists return the index, otherwise return -1. Your algorithm should run in O(log n) time.

• Provide a description of your algorithm (in words and pseudocode), and justify its correctness.

• Discuss the running time by providing the recurrence relation and applying the Master Theorem.

Solution

• Design and Correctness:
The algorithm can be designed as a binary search. We start with comparing S[n/2] with n/2. If
S[n/2] = n/2, then we return n/2 as the answer. Otherwise, if S[n/2] > n/2, then we claim that for
any k > n/2, we must have S[k] > k because all integers in S are distinct and sorted in ascending
order. Thus, for any k > n/2, we have S[k] ≥ S[n/2] + (k − n/2) > n/2 + k − n/2 = k. Therefore,
when we have S[n/2] > n/2, we can discard the right half of the array and limit our search to the left
sub-array. Similarly, if S[n/2] < n/2, then we can discard the left sub-array and limit our search to
the right sub-array. This procedure has been demonstrated in the following pseudo-code:

Algorithm 1: SearchIndex

Input: S = {s1, s2, ..., sn}, lo = 1, hi = n
Result: index k such that S[k] = k, otherwise −1

// base case

1 if (lo == hi and S[lo] = lo) then
2 return lo
3 end
4 if (lo == hi and S[lo] ̸= lo) then
5 return −1
6 end

// recurrence relation

7 mid← [(lo+ hi)/2]
8 if (Smid == mid) then
9 return mid

10 else if (Smid < mid) then
11 return SearchIndex(S, mid+1, hi)

12 else
13 return SearchIndex(S, lo, mid-1)

14 end

Alternative solution: We can solve this problem by a binary search approach. For this purpose, we
can define a new array B[i] = A[i]− i. It can be shown that the new array is also sorted in increasing
order, i.e., B[i] ≤ B[i+ 1]:

B[i] = A[i]− i ≤ (A[i+ 1]− 1)− i = A[i+ 1]− (i+ 1) = B[i+ 1]

It is obvious that A[i] = i iff B[i] = 0. Therefore, our search problem transforms to finding an index i
such that B[i] = 0. Thus, the binary search algorithm can be employed to find the index of the element
which is equal to the target value 0.

3

• Running time analysis:
Similar to the binary-search algorithm explained in the lectures, at each step of the recursion, the
search domain is divided by a factor of 2, and the recurrence relation is

T (n) = T (n/2) +Θ(1)

Therefore, using Master Theorem, we have a = 1, b = 2, and d = 0, which is the second case a = bd.
Thus, T (n) ∈ Θ(log n).

Problem 3 — Divide and Conquer (10 pts)

You are given a rotated sorted array S of size n. Design a binary search algorithm to find the minimum
element of this array. Your algorithm should run in O(log n) time. Provide a description of your algorithm.
Runtime analysis is not required.

Def. Rotated sorted array of size n is a sorted array, where its elements are shifted k times (0 ≤ k < n) to
the right. For instance, let S = [0, 1, 2, 3, 4, 5, 8] be a sorted array before rotation, then

• After k = 3 rotations: S = [4, 5, 8, 0, 1, 2, 3]

• After k = 6 rotations: S = [1, 2, 3, 4, 5, 8, 0]

Note for both examples, your algorithm should return 0 as the minimum of the array.

Solution

We can apply a modified version of Binary-search algorithm discussed in the lectures to find the minimum
of a rotated sorted array. If a sorted array is not rotated then we have a1 < . . . < an, thus a1 < an
and a1 is the min of the array. For instance, if A = [2, 3, 4, 5, 8, 10, 11] then we have a1 = 2 < an = 11
and 2 is the minimum value of the array. Otherwise, If a1 > an it means the sorted array is rotated (Ex.
A = [5, 8, 10, 11, 2, 3, 4], where a1 = 5 > an = 4). That implies that there exists an element ai such that
ai−1 > ai for 1 < i ≤ n, where ai is the min of the array, also known as the rotation (or pivot) point. We
can modify the Binary-search to find this element:

while lo < hi :

1. Find the mid element mid← [lo+hi
2]

2. If amid < an, it means that the right half is sorted; therefore, the rotation point is in the left sub-array.
Thus, set hi← mid to continue the search in the left sub-array.

3. If amid > an, it means that the right half is not sorted; therefore, the rotation point is in the right
sub-array. Thus, set lo← mid+ 1 to continue the search in the right sub-array.

4. The search stops when two pointers meet each other at the position of the minimum element, i.e.,
lo = hi, where min = alo = ahi

Note alternatively, you can compare the mid element with a1 at each iteration.

4

Algorithm 2: BinarySearchRotated

Input: A = {a1, a2, ..., an}, lo = 1, hi = n
Result: min(A)

1 while (lo < hi) do
2 mid← [(lo+ hi)/2]
3 if (Smid < Shi) then
4 r ← mid
5 else if (Smid > Shi) then
6 l← mid+ 1

7 end
8 return A[lo]

A running time analysis is not required in this problem. But with a reasoning similar to the previous
problem, we can obtain T (n) ∈ Θ(log n).

Notes:

• While an iterative approach is presented in this solution, any other correct algorithm, e.g., recursive
approach, is also accepted.

• The O(log n) solution is guaranteed only if the numbers in this array are distinct. Otherwise, the time
complexity is on average O(log n), but in the worst case, where all elements are identical, the binary
search will iterate over each element, and thus, it gives O(n) running time.

5

