
CS 3510 – Assignment 1

Due Friday, May 27, 2022 at 11:59pm on Canvas

• Please type your answers (LATEX is highly recommended) and upload a single PDF file named
<Your-GT-Account>.pdf, e.g., GBurdell3.pdf, including all your answers. You can submit multi-
ple times. Canvas keeps track of the submissions and append a version number when you re-submit.
We always grade your most recent submissions.

• Please read the policies, and do not forget to acknowledge your collaborators and cite your references.

• If you do not understand a question, please ask on Piazza or come to office hours well ahead of the
due date.

Problem 1 — Asymptotic Notations (10 pts)

1. (5 pts) For each pair of functions f and g, write whether f is in O(g), Ω(g), or Θ(g), whichever is most
accurate. Just write the asymptotic notation; no explanation is required.

(a) f = (n+ 1000)4, g = 1000n4 − 2n3 + 1

(b) f = log1000 n, g = log2 n

(c) f = n1000, g = n2

(d) f = 2n, g = n!

(e) f = (n+ 1)3, g = 4log2 n (Hint: alogb c = clogb a)

2. (5 pts) Use the mathematical definition of big-O notation to prove the following additivity properties:
f , g and h are functions of input size n. Prove that if f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h).

Problem 2 — Divide and Conquer (20 pts)

You are given a sorted array S = [s1, s2, . . . , sn] with n distinct integers, i.e., si < si+1, for all 1 ≤ i < n.
Design a divide-and-conquer algorithm to decide whether there exists an index k such that S[k] = k. If such
an element exists return the index, otherwise return -1. Your algorithm should run in O(log n) time.

• Provide a description of your algorithm (in words and pseudocode), and justify its correctness.

• Discuss the running time by providing the recurrence relation and applying the Master Theorem.

1

http://www.cs3510.com/policies/


Problem 3 — Divide and Conquer (10 pts)

You are given a rotated sorted array S of size n. Design a binary search algorithm to find the minimum
element of this array. Your algorithm should run in O(log n) time. Provide a description of your algorithm.
Runtime analysis is not required.

Def. Rotated sorted array of size n is a sorted array, where its elements are shifted k times (0 ≤ k < n) to
the right. For instance, let S = [0, 1, 2, 3, 4, 5, 8] be a sorted array before rotation, then

• After k = 3 rotations: S = [4, 5, 8, 0, 1, 2, 3]

• After k = 6 rotations: S = [1, 2, 3, 4, 5, 8, 0]

Note for both examples, your algorithm should return 0 as the minimum of the array.

2


