
CS 3510: Design and Analysis of Algorithms Georgia Tech

Final Exam
Instructor: Shahrokh Shahi Summer 2022

GT Username: Full Name:

Instructions:

1. Write your name and GT username on each page very clearly. Then, complete the exam.

2. This exam is closed-book, and collaboration is NOT permitted.

3. You are allowed to use one sheet of notes, i.e., both sides of a letter-sized paper, during the exam.

4. No calculator is required.

5. You have 120 minutes to complete this exam.

6. It is recommended to read all the questions before starting. Please read the questions carefully. Mis-
understanding the question is not a valid excuse for losing points.

7. If you find it necessary, make reasonable assumptions but make sure to state them clearly.

8. You can use the back of each sheet as scratch paper.

9. Write your solution in the space provided. In case you need more space, you can use back of the same
sheet, and make a notation on the front of the sheet.

10. The exam has 80 + 4 points in total.

Good luck!

Number Problem Points Grade
1 Short Answer Questions 30 pts
2 Divide-and-Conquer 10 pts
3 Dynamic Programming 10 pts
4 Shortest Path Problem 10 pts
5 Shortest Path Problem 10 pts
6 Flow Network 10 pts

1

GT Username: Full Name:

1 Short answer questions [30 pts]

1.1 Asymptotic Notations and Master Theorem [6 pts]

(a) (2 pts) Rank the following functions by increasing order of asymptotic growth, that is find an arrange-
ment f1, f2, f3, . . . such that f1 ∈ O(f2), f2 ∈ O(f3), Explanation/justification is NOT required.

n10000001,
√
n, n.2n, 1024, nn, log n, 2n, n3 + log n2, n,

(
3

2

)n

1024, log n,
√
n, n, n3 + log n2, n10000001,

(
3
2

)n
, 2n, n.2n, nn

Grading: each error -1/2, zero credit for more than 4 mistakes.

(b) (4 pts) For the following divide-and-conquer programs, give the recurrence relation describing their
running time and apply the Master Theorem to calculate the running time. Grading: recurrence 1 pt,
running time 1 pt

def func (n) :
i f n==0: stop

func (n/3)

func (n/3)

do something in O(1)

Recurrence relation: T (n) = 2T (n/3) +O(1)
Using master theorem: a = 2, b = 3, d = 0, and
a > bd. Therefore, T (n) = nlogb a = nlog3 2

def func (n) :
i f n==0: stop

func (n/4)
do something in O(1)

func (n/4)
do something in O(n)

func (n/4)
do something in O(n2)

Recurrence relation: T (n) = 3T (n/4) +O(n2)
Using master theorem: a = 3, b = 4, d = 2, and
a < bd. Therefore, T (n) = nd = n2

2

GT Username: Full Name:

1.2 Algorithm Paradigms [5 pts]

Complete the following table by writing the used design paradigm (e.g., divide-and-conquer, dynamic pro-
gramming, etc.) and the application of each of the following algorithms discussed in class.

Algorithm Design paradigm Application
Kruskal

Greedy MST
Dijkstra

Greedy Shortest path
Prim

Greedy MST
Bellman-Ford

Dynamic Programming Shortest path
Floyd-Warshall

Dynamic Programming Shortest path (all pairs)

Grading: for Floyd-Warshall, only ”Shortest path” is accepted.

1.3 NP Completeness [10 pts]

(a) (4 pts) Briefly describe the two possibilities for the relationships among complexity classes P, NP, and
NP-complete. Also, show these two possibilities using Venn diagram (in terms of set inclusion).

(1) P = NP = NPC, (2) P ⊆ NP but NP ̸⊆ P, so P ̸= NP

(b) (6 pts) Suppose there is a polynomial-time reduction from problem A to problem B (A ≤p B). Specify
whether the following statements are True or False.

Statement True / False
1 Problem B is NP-hard. F

2 Polynomial-time algorithm for solving B can be used to solve A in polynomial time. T

3 If B has no polynomial-time algorithm then neither does A. F

4 If A is NP-hard and B has a polynomial-time algorithm then P=NP. T

5 If B is NP-hard then A is NP-hard. F

6 If B reduces to C then A reduces to C. T

3

GT Username: Full Name:

1.4 General True/False Questions [10 pts]

For each of the following statements, decide whether it isTrue or False. If it is true, provide a short explanation
and if it is false, give a counterexample. Grading: each true/false 1 pt, reasoning/counterexample 1 pt

1. An input array that gives the best running time in the Insertion-sort algorithm can give the worst
running time in the Quick-sort algorithm.
True; a sorted array gives the best running time (O(n)) in the Insertion-sort but the worst running
time O(n2) in the Quick-sort algorithm.

2. Let G = (V,E) be a weighted graph and let T be a minimum spanning tree of G. The path in T
between any pair of vertices u and v must be a shortest path in G.
False. Counterexample: V = {a, b, c} and E = {(a, b), (b, c), (c, a)}, where w(a, b) = 3, w(b, c) = 3, and
w(c, a) = 4. Clearly, T = {(a, b), (b, c)}. But the shortest path between c and a is the edge (c, a) of
weight 4 and not the path from the MST which has a total weight of 3 + 3 = 6.

3. Given a directed and weighted graph G = (V,E), let P be a minimum weight (shortest distance) s− t
path between two given s and t nodes. Assume we replace each edge weight, we by its square w2

e for
all e ∈ E, thereby creating a new graph G′ with the same vertices but different edge weights. Then, P
must still be a minimum weight (shortest) path between s and t for the new graph G′.
False. As the counter example consider the following graphs G and G′:

4. The maximum spanning tree (spanning tree of maximum weight) can be computed by negating the
cost of all the edges in the graph and then computing minimum spanning tree.
True; this works, and none of the algorithms presented for finding an MST depended on edge weights
being non-negative.

5. The heaviest edge in a graph cannot belong to the minimum spanning tree.
False. This edge may be connecting two otherwise-disconnected subgraphs. Any counterexample that
can show that is accepted.

4

GT Username: Full Name:

2 Divide-and-Conquer [10 pts]

Georgiana has two sorted arrays A = [v1, . . . , vn] and B = [v1, ..., x, ..., vn], where 0 < v1 < . . . < vn and
the second array, B, is obtained by inserting an integer number x into the first array, A, where x ̸= vi for
all 1 ≤ i ≤ n. Therefore, A has n elements and B has n + 1 elements. Note that x can be inserted at any
position i, 1 ≤ i ≤ n, into the first array. She is tasked with finding the index of the inserted element x in
the second array B. Let’s help Georgiana design an efficient algorithm to solve this problem.

Example 1: index of the inserted number = 4

A = [2, 3, 6, 9, 10, 18, 20, 23]

B = [2, 3, 6, 100, 9, 10, 18, 20, 23]

Example 2: index of the inserted number = 1

A = [2, 3, 6, 9, 10, 18, 20, 23]

B = [−4, 2, 3, 6, 9, 10, 18, 20, 23]

Example 3: index of the inserted number = 9

A = [2, 3, 6, 9, 10, 18, 20, 23]

B = [2, 3, 6, 9, 10, 18, 20, 23, 47]

Design an efficient algorithm to find the index of the inserted number x in B. The running
time of your algorithm should not be larger than O(log n). You can assume that the elements
of the arrays (v1, . . . , vn) are distinct, and x also is not equal to any of them.

(a) (5 pts) Explain your algorithm in words.

Key observation: For any i (1 ≤ i ≤ n), if A[i] == B[i], then we can be sure that the index of the
inserted number, say k, is greater than i (k > i), i.e., k is in the right side of i. Otherwise, k ≤ i. We
can use this observation to construct a binary search algorithm and at each step compare A[mid] and
B[mid], where mid = (lo+ hi)/2. Therefore,

Python implementat ion
def f i n d d i f f e r e n c e (A,B) :

n = len (A)
l , r = 0 , n
while l < r :

m = (l+r)//2
i f B[m]==A[m] :

l = m+1
else :

r=m
return l

5

GT Username: Full Name:

(b) (5 pts) Provide the pseudocode describing your algorithm.

Algorithm 1: FindIndex

Input: A = {a1, a2, ..., an} and B = {a1, a2, ..x..., an}
Result: the index of the inserted zero

lo← 0
hi← n

while (lo < hi) do
mid← ⌊(lo+ hi)/2⌋
if (B[i]==A[i]) then

lo← m+ 1
else

hi← m
end

end

return l

Note: Other implementations, e.g., recursive approach is also accepted.

6

GT Username: Full Name:

3 Dynamic Programming [10 pts]

The Coin-changing algorithm discussed in class lectures provides the minimum number of coins required to
make change for S cents with an infinite supply of coins whose values are represented by an array, i.e., Coins
= {v1, v2, . . . , vn}. Modify this dynamic programming algorithm to return the total number of combinations
of coins that can make up the total amount of S cents. If that amount of money cannot be obtained by any
combination of the given coins, then the algorithm should return 0.

Example 1: Let the total amount S = 5 and Coins = {1, 2, 5}, return 4
The combinations that we can make up the total amount of 5:
(1) 1 + 1 + 1 + 1 + 1,
(2) 1 + 1 + 1 + 2,
(3) 1 + 2 + 2,
(4) 5

Example 2: Let the total amount S = 5 and Coins = {2}, return 0
Because we cannot make up 5 cents using any number of the coin of 2.

Design the Coin-changing-combinations algorithm to return the total number of combinations
of coins that can make up the total amount of S cents.

(a) (5 pts) Discuss the optimal substructure of the Coin-changing-combinations problem, and give the
recurrence relation including the base case(s).

As mentioned in class, this problem can be solved with a 2D dynamic programming approach but it can also
be reduced to a 1D case. Here we describe the latter, but a 2D solution is also accepted for this problem.

1D approach:
Let OPT [T] denotes the number of combinations of coins to make up T cents, where T ≤ S, and our goal
is finding OPT [S]. Clearly, the problem has optimal substructure, where the solution to the problem can be
constructed using the solutions of the subproblems. The base case is when the given value is zero (we have
no money so we need no coin for change). This will be just one combination, i.e., using no coin. Therefore,
OPT [0] = 1. Also, another base case is when we have no coin, i.e., Coins = {}. In this case, for any
0 < T ≤ S, we will have zero combination that can make up T cents; thus, OPT [T] = 0, for 0 < T ≤ S. The
optimal substructure can be observed when we pick up, for instance the i-th coin with the value of vi, and
use it to make up the amount T cent. In this case, the number of combinations is the sum of the following
two choices:

1. Using coin i to make up the T cent. In this case, the number of combinations is equal to the number
of combinations to make up T − vi cent, i.e., OPT [T − vi].

2. Not using coin i and make up the T cent with the previous i− 1 coins, where in this case, the number
of combinations remain OPT [T] obtained in previous step.

Therefore, the recurrence relation can be written as OPT [T] = OPT [T] + OPT [T − vi], and for each coin
of value vi, we can iterate over all amounts v = {vi, vi + 1, vi + 2, . . . , S} and compute the number of
combinations. (Base cases: OPT [0] = 1, and OPT [T] = 0, for 0 < T ≤ S.)

7

GT Username: Full Name:

2D approach:
Note one could define OPT [i, T] as the number of combinations of coins to make up T cents with the
first i coins, and treat this problem as a 2D dynamic programming problem. In this case, the number of
combinations is the sum of the following two choices:

(b) (3 pts) Give the pseudocode of a bottom-up or top-down implementation of the dynamic programming
algorithm using the recurrence relation from part (a).

Bottom-up implementation:

Algorithm 2:
Coin-changing-combinations(1D)

Input: S and Coins = {v1, v2, . . . , vn}
Result: the total number of combinations

that we can build S using the
coin values.

opt← [1, 0, 0, . . . , 0]

for (vi ∈ {v1, . . . , vn}) do
for (t ∈ {vi, . . . , S}) do

opt[t]← opt[t] + opt[t− vi]
end

end

return opt[S]

Algorithm 3:
Coin-changing-combinations(2D)

Input: S and Coins = {v1, v2, . . . , vn}
Result: the total number of combinations

that we can build S using the coin
values.

opt← zeros(n+ 1, S + 1)
for (i ∈ {0, . . . , n}) do

opt[i][0]← 1
end

for (i ∈ {1, . . . , n}) do
vi ← Coins[i] for (t ∈ {1, . . . , S + 1})
do

opt[i][t]← opt[i− 1, t]
if t− vi ≥ 0 then

opt[i][t]← opt[i][t] + opt[t− vi]
end

end

end

return opt[S]

(c) (2 pts) Discuss the time and space complexities of your algorithm.

Time complexity O(nS), Space complexity O(S) for 1D implementation and O(nS) with 2D imple-
mentation.

8

GT Username: Full Name:

4 Shortest Path [10 pts]

Consider the following graph G = (V,E), where E = {(s, x), (s, y), (x, y), (x,w), (y, z), (z, x), (z, w)} and
V = {s, x, y, z, w}, and answer the following question.

We want to run the Bellman-Ford algorithm explained in class, from node s to find the shortest distance
from this node to every other nodes in the given graph. The following tables show the shortest distance
estimation array, ds[v] and the predecessors array, π[v], at the end of the first iteration (i = 1).
Perform the next iteration of Bellman-Ford algorithm and give the values of these two arrays at the end
of the second iteration (i = 2). Note for the relaxing procedure, visit edges in the EXACT order as they
appeared in the edge set E presented above.

You may use the next page to show your work for partial credit.

v π[v] π[v]
(i = 1) (i = 2)

s ϕ ϕ

x z z

y s x

z y y

w x x

i d[s] d[x] d[y] d[z] d[w]

0 0 ∞ ∞ ∞ ∞

1 0 2 2 4 6

2 0 1 1 3 5

9

GT Username: Full Name:

V = {s, x, y, z, w},

E = {(s, x), (s, y), (x, y), (x,w), (y, z), (z, x), (z, w)}

10

GT Username: Full Name:

5 Shortest Path [10 pts]

Let G = (V,E) be a directed graph with positive edge . Let t ∈ V . Give an algorithm that runs in O(|V |2)
time for finding shortest paths between all pairs of nodes, such that these paths pass through t. You can
assume the graph G is represented using either adjacency matrix or adjacency list. Also, in your design, you
are allowed to use the algorithms we discussed in class without discussing their details.

(a) (8 pts) Describe your algorithm in words, and justify the correctness of your approach. No pseudocode
is required. (Hint: You may first consider finding the shortest distance of other nodes to and from
node t.)

Let δt(u, v) denote the length of the shortest path from u to v passing through t. We must have that
δt(u, v) = δ(u, t) + δ(t, v), where δ(u, t) denotes the shortest distance from u to t and δ(t, v) represents
the shortest distance from t to v. Therefore, to determine δt(u, v) for all pairs of vertices, we only need
to determine δ(u, t) for all u ∈ V and δ(t, v) for all v ∈ V . This can be done by running Dijkstra’s
algorithm twice on the given graph G and its reverse GT .

More specifically, we can determine δ(t, v) for all v ∈ V by running Dijkstra’s algorithm on graph G,
where t is set as the source node. Then, we can reverse the graph (creating GT), and run Dijkstra’s
algorithm on the reverse graph GT , with t as the source node. Clearly, a shortest path from t to u
in the reverse graph GT corresponds to a shortest path from node u to t in the original graph G.
Therefore, the second execution of Dijkstra’s algorithm on the reverse graph GT will give us δ(u, t)
for all u ∈ V . Once we have both δ(u, t) for all u ∈ V and δ(t, v) for all v ∈ V , we can compute the all
pairs shortest distance δt(u, v) for all u, v ∈ V by adding δ(u, t) and δ(t, v).

To find the shortest path from u to v passing through t, we can simply concatenate the shortest
path from u to t and the shortest path from t to v, where both of which can be obtained within the
Dijkstra’s algorithm execution using backtracing pointers.

(b) (2 pts) Discuss the running time of your algorithm.

The running time of the explained algorithm is O(|V |2). We need to run the Dijkstra’s algorithm
twice, where each run takes O(|V |2) with adjacency matrix representation (the priority queue can be
an unordered array in this case), or with an adjacency list representation it takes O(|E| log |V |). Also,
reversing the graph takes O(|E| + |V |) with an adjacency list representation or O(|V |2) if we use the
adjacency matrix representation. The adding operations for δ(u, t) + δ(t, v) to create the all pairs
shortest distance matrix take O(|V |2). Therefore, the overall running time is dominated by O(|V |2).

11

GT Username: Full Name:

6 Flow Network: Ford-Fulkerson Algorithm (10 pts)

Consider the following st-flow network and the given feasible flow f .

(a) (1 pts) What is the value of the current flow f?

6 + 20 + 10 = 36

(b) (2 pts) What are the two constraints of a flow? Verify that f is a feasible flow in this network.

(1) (capacity) 0 ≤ f(e) ≤ c(e), ∀e ∈ E
(2) (flow conservation)

∑
e→v f(e) =

∑
e←v f(e), ∀v ∈ V − {s, t}

These two conditions hold for all edges and intermediate nodes in the given graph.

(c) (3 pts) Perform one iteration of the Ford-Fulkerson algorithm, starting from the flow f . Give the
sequence of vertices on an augmented path. Draw the residual graph, and show the path you chose.

12

GT Username: Full Name:

(d) (2 pts) What is the value of the maximum flow? (Justify your answer using the final residual graph)

val(f) = 9 + 14 + 15 = 38
There is no augmenting path left, so the Ford-Fulkerson algorithm is terminated and according to
the augmenting path theorem, the flow f is the max flow.

(e) (2 pts) List vertices on the s side of a minimum cut. (Hint: use your work from part c) What is the
capacity of the minimum cut?

We can choose the nodes that are reachable from s in the final residual graph. Therefore, set A =
{s, a, b, c}
Capacity = c(s, e) + c(c, e) + c(c, d) + c(b, t) = 10 + 4 + 15 + 9 = 38.

13

7 Course Feedback

Please let us know what you think about the course in general, and if you have any comments and/or
suggestions about the course materials, presentation, etc. Was there anything specific in this course that
you particularly liked/disliked? Was there any specific topic that you found more/less interesting?

14

	Short answer questions [30 pts]
	Asymptotic Notations and Master Theorem [6 pts]
	Algorithm Paradigms [5 pts]
	NP Completeness [10 pts]
	General True/False Questions [10 pts]

	Divide-and-Conquer [10 pts]
	Dynamic Programming [10 pts]
	Shortest Path [10 pts]
	Shortest Path [10 pts]
	Flow Network: Ford-Fulkerson Algorithm (10 pts)
	Course Feedback

