
CS 3510: Design and Analysis of Algorithms Georgia Tech

Exam 2
Instructor: Shahrokh Shahi Summer 2022

GT Username: Full Name:

Instructions:

1. Write your name and GT username on each page very clearly. Then, complete the exam.

2. This exam is closed-book, and collaboration is NOT permitted.

3. You are allowed to use one sheet of notes, i.e., both sides of a letter-sized paper, during the exam.

4. No calculator is required.

5. You have 80 minutes to complete this exam.

6. It is recommended to read all the questions before starting. Please read the questions carefully. Mis-
understanding the question is not a valid excuse for losing points.

7. If you find it necessary, make reasonable assumptions but make sure to state them clearly.

8. You can use the back of each sheet as scratch paper.

9. Write your solution in the space provided. In case you need more space, you can use back of the same
sheet, and make a notation on the front of the sheet.

10. The exam has 50+2 points in total.

Good luck!

Number Problem Points Grade
1 Short Answers 20+2
2 Graph Traversal Applications 10
3 Minimum Spanning Tree 12
4 Minimum Spanning Tree 8
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1 Short questions [20+2 pts]

(a) (8 pts) Complete the following table by writing the data structure and running time of each of these
algorithms discussed in class. Grading: each 1 pt

Algorithm Data Structure Running Time
Breadth-first search
(BFS) Queue O(|V |+ |E|) or O(n+m)
Depth-first search
(DFS) Stack O(|V |+ |E|) or O(n+m)
Kruskal

Disjoint Set (Union-Find) O(|E| log|V |) or O(m log n)
Prim

Priority Queue (Min-Heap) O(|E| log|V |) or O(m log n)

(b) (8 pts) For each of the following statements, decide whether it is True or False. If it is true, provide
a short explanation and if it is false, give a counterexample. True/False 1 pt, reasoning: 1 pt

1. In the interval-scheduling (activity-selection) problem discussed in class, “earliest start time”,
i.e., considering jobs in ascending order of starting times, is the greedy choice that gives the
optimum greedy solution. False; consider intervals = [[1, 10], [2, 3], [4, 5], [7, 8]].
The optimum solution is 3 but the given greedy choice gives 1.

2. If graph G = (V,E) is bipartite, then its nodes can be colored with two colors such that the
endpoints of each edge get different colors.

True; bipartite iff 2-colorable

3. If G = (V,E) is a graph with |V | = n vertices, then it must have at least n edges to be a connected
graph.

False; it can be a tree with n− 1 nodes. Other counterexamples are also accepted

4. Suppose T is an MST of given weighted G = (V,E), where all edge weights are positive and
distinct. If we replace each edge weight, we by its square w2

e for all e ∈ E, thereby creating a new
graph G′ with the same vertices but different edge weights, then T must still be an MST of the
new graph G′.

True; if we run the Kruskal’s algorithm on the new graph G′, it will work in the same way as the
edge weights will remain in the same order after sorting. Therefore,the same subset of edges will
be selected for the MST of G′.

2



GT Username: Full Name:

(c) (6 pts) For the following directed graph G = (V,E):

1. (3 pts) Run the DFS algorithm and give the discovery time and finishing time of each node. (In a
tie situation, choose nodes in the lexicographical order. For instance, if at some step, you have the
option to choose between nodes 2 and 4 for the next vertex to traverse, you must choose vertex
2 first.) Grading: each mistake -1/2

2. (2 pts) Using the result of the DFS traversal obtained in previous part, give a topological ordering
for the graph G.

0 - 3 - 1 - 2 - 7 - 4 - 5 - 6

partial grade if some part of that is correct or some explanation is provided.

3. (1 pt) Is this graph a directed acyclic graph (DAG)? Explain your answer briefly.

Yes. Because the graph has a topology ordering and we know a directed graph is a DAG if and
only if it has a topology ordering.
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2 Traversal Applications (10 pts)

The Atlanta Police Department has made all streets one-way in Midtown Atlanta, and states that there
is still a way to drive legally from any intersection in the Midtown to any other intersection. A computer
program is required to evaluate this statement. Design an efficient (linear) algorithm to accomplish this task
by answering the following questions:

(a) (3 pts) Explain how this problem can be formulated as a graph problem and discuss how the corre-
sponding graph can be represented in linear running time.

Graph problem: Consider the Midtown Atlanta as a directed graph G = (V,E) such that the vertices in
V represent the intersections in this area, and the directed edges in E represent the streets connecting
them. Constructing this graph by the adjacency list representation can be done in O(|V |+ |E|)

Grading: 2 (formulating as graph problem) + 1 (mentioning list representation)
Note the running time can be discussed in part (c)

(b) (5 pts) Give an efficient algorithm to evaluate the given statement, and justify the correctness of your
solution.

Design: The claim is true if we can get from any vertex to any other vertex, which translates into our
graph been strongly connected. Thus, to solve this part we run SCC and output YES if G has one
strongly connected component and NO otherwise.

Correctness: Let’s consider the graph G. To verify the statement, we need to verify if a path from u to
v exists for all u, v ∈ V . We know that the above condition will hold true if and only if G is strongly
connected.
Grading: 3 (design) + 2 (correctness) – similar explanations are also accepted.

(c) (2 pts) Discuss the overall running time of your algorithm including the computation required to
construct the corresponding graph and the the running time required to evaluate the statement.

Running time Both building the graph and running the SCC algorithm take linear time O(|V | + |E|);
therefore, the overall running time of the entire algorithm is O(|V |+ |E|).
Grading: 1 (SCC) + 1 (construction of graph)
It’s okay if they mentioned the construction running time in part (a)
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3 Minimum Spanning Tree [12 pts]

Find the minimum spanning tree of the following graph, using Kruskal’s and Prim’s algorithms. First, briefly
explain how, in general, each edge will be selected at each step of these algorithms. Then, in each case, list
the steps taken by the algorithm to find the minimum spanning tree, and mark the selected edges on the
given graph. (Note, when you list the steps, the order of edges added to the MST matters. In case of a tie,
you can choose deliberately.)

(a) (1 pt) Explain how a safe edge is selected to be added to the minimum spanning tree at each step of
Kruskal’s algorithm.

From lectures, the growing set A is a forest whose vertices are all those of the given graph. The safe
edge added to A is always a least-weight edge in the graph that connects two distinct components.

(b) (5 pts) Find the minimum spanning tree using Kruskal’s algorithm. Write down the edges of the MST
in the order in which they are added to the MST by Kruskal’s algorithm.

Note we could choose BC before AF. It is also the case for AE and EB, where we could choose EB
before AE.

(each correct edge 1 pt; each incorrect order -1/2)
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(c) (1 pt) Explain how a safe edge is selected to be added to the minimum spanning tree at each step of
Prim’s algorithm.

From lectures, the growing set A forms a single tree. The safe edge added to A is always a least-weight
edge connecting the tree to a vertex not in the tree.

(d) (5 pts) Find the minimum spanning tree using Prim’s algorithm. Write down the edges of the MST in
the order in which they are added to the MST by Prim’s algorithm.
Assume the algorithm starts at vertex A. (each correct edge 1 pt; each incorrect order -1/2)
AF → FD → AE → EB→ BC
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4 Minimum Spanning Tree [8 pts]

Give a counter-example or prove the following statement: Let G = (V,E) be a weighted undirected graph.
Let C be one cycle in G and let e be an edge in C. If the weight of e is strictly larger than any other edge
in C, then e is not in any minimum spanning tree of G.

This statement is TRUE.
Proof: We know that a minimum spanning tree cannot have a cycle; therefore, at least one edge of the cycle
C cannot be in a minimum spanning tree of G. Let’s call this edge e′. For the sake of contradiction, consider
e′ ̸= e. we know that the weight of e is strictly larger than any other edge in C, so e′ < e. Thus, we can swap
e′ for e in our spanning tree which gives a spanning tree with a smaller weight than the minimum spanning
tree. This is contradiction. Therefore, the heaviest weight edge e cannot be in any minimum spanning tree
of G. ■

We can also look this problem in this way: Again, let’s assume e is in the spanning tree T . If we remove e
from T , we have two sub-trees T1 and T2. We know that e is an edge in cycle C; therefore, there must be at
least another edge (like e′) in the cut set of (T1, T2) in graph G that can connect T1 and T2. Using this edge
e′, we can define another spanning tree T ′ = T − e+ e′ which has a lighter weight than T since e is strictly
heavier than e′. Therefore, e is not in any minimum spanning tree of G. ■
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