
CS 3510: Design and Analysis of Algorithms Georgia Tech

Exam 1
Instructor: Shahrokh Shahi Summer 2022

GT Username: Full Name:

Instructions:

1. Write your name and GT username on each page very clearly. Then, complete the exam.

2. This exam is closed-book, and collaboration is NOT permitted.

3. You are allowed to use one sheet of notes, i.e., both sides of a letter-sized paper, during the exam.

4. No calculator is required.

5. You have 80 minutes to complete this exam.

6. It is recommended to read all the questions before starting. Please read the questions carefully. Mis-
understanding the question is not a valid excuse for losing points.

7. If you find it necessary, make reasonable assumptions but make sure to state them clearly.

8. You can use the back of each sheet as scratch paper.

9. Write your solution is the space provided. In case you need more space, you can use back of the same
sheet, and make a notation on the front of the sheet.

10. The exam has 50 points in total.

Good luck!

Number Problem Points Grade
1 Asymptotic Notations 12
2 Master Theorem 10
3 Divide-and-Conquer: Tri-Merge-Sort 8
4 Divide-and-Conquer: Binary Search 10
5 Dynamic Programming 10

1

GT Username: Full Name:

1 Asymptotic Notations [12 pts]

(a) (5 pts) For each pair of functions f and g, choose one of f ∈ O(g), f ∈ Θ(g), f ∈ Ω(g) that best
describes their relative asymptotic growth. No justification is required.

– f = log(n3), g = 100 log(n)
Sol: Θ (1 pt)

– f = n4, g = (n log n)3 + n2

Sol: Ω (1 pt)

– f = n1000, g = 1.5n

Sol: O (1 pt)

– f = 2n, g = (52)
n

Sol: O (1 pt)

– f = (n+ 3)3, g = 100n3 − n
Sol: Θ (1 pt)

(b) (3 pts) Give the mathematical definition of f(n) ∈ Ω(g(n)) and provide an example.

f(n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that f(n) ≥ cg(n) ≥ 0 for all n ≥ n0.

or

f(n) ∈ Ω(g(n)) if ∃ c > 0 and n0 ≥ 0 such that ∀n ≥ n0, f(n) ≥ cg(n) ≥ 0

Ex. f(n) = n2, g(n) = n log n⇒ f(n) = Ω(g(n))

(c) (4 pts) Assume you have functions f and g, such that f(n) ∈ O(g(n)). For the following statement,
tell whether it is true or false, and give a proof (if it is true) or a counterexample (if it is false).

if g(n) ∈ O(h(n)), then f(n) ∈ O(h(n)).

True (Transitivity of asymptotic growth rate)
We are given f(n) = O(g(n)); therefore, for some constants c1 > 0 and n1 ≥ 0, we have f(n) ≤ c1g(n)
for all n ≥ n1. Moreover, due to g(n) = O(h(n)), for some c2 > 0 and n2 ≥ 0, we have g(n) ≤ c2h(n)
for all n ≥ n2. Now, consider any number n that is at least as large as both n1 and n2. We have f(n) ≤
c1g(n) ≤ c1c2h(n), and so f(n) ≤ c1c2h(n) = ch(n), where c = c1c2 > 0, for all n ≥ max(n1, n2).
Thus, f(n) = O(h(n)).

2

GT Username: Full Name:

2 Master Theorem [10 pts]

2.1 Solve the following recurrence relations using the Master Theorem and give
the tightest bound in terms of Θ. Also, state whether the computational
cost is dominated at the leaves, the root or equally distributed at all levels
of the corresponding recursion tree.

(a) (3 pts) T (n) = 9T (n/3) + Θ(n2)
a = 9, b = 3, d = 2⇒ a = bd ⇒ T (n) = Θ(n2 log n)
equally distributed

(b) (3 pts) T (n) = 5T (n/4) + Θ(12n+ 5)
a = 5, b = 4, d = 1⇒ a > bd ⇒ T (n) = θ(nlog4 5)
dominated at the leaves

2.2 (4 pts) For the following divide-and-conquer program, give the recurrence
relation describing the running time and apply the Master Theorem to
calculate the running time.

def func (n) :
i f n==0: stop

func (n/3)

func (n/3)

do something in O(n)

Recurrence relation: T (n) = 2T (n/3) +O(n)
Using master theorem: a = 2, b = 3, d = 1, and a < bd. Therefore, T (n) = Θ(nd) = Θ(n)

3

GT Username: Full Name:

3 Divide-and-Conquer: Tri-Merge-Sort [8 pts]

We would like to build a more advanced version of the Merge-Sort algorithm in which at each step the array
will be divided into three sub-arrays. Answer the following questions:

(a) (4 pts) The merging step in the Merge-Sort algorithm (discussed in lectures) combines two sorted
sub-arrays in linear time. Now, suppose we have three sorted sub-arrays A, B, and C, each of length
n/3, and we want to merge them into a single sorted array S of length n containing all elements of
these three sub-arrays. Design an algorithm that can combine these three sorted sub-arrays in linear
time. Describe your algorithm in words or pseudocode.

This is similar to the merging step in the normal merge-sort algorithm – this extension was also
discussed in lecture 2 (see demo code in lecture 2).

def t r i me rge (A, B, C) :
n = len (A)
merged = [0] ∗ (3 ∗ n) # place−ho lde r f o r the output
p1 = p2 = p3 = i = 0
INF = f loat (” i n f ”)

while i < 3∗n :
a = A[p1] i f p1 < n else INF
b = B[p2] i f p2 < n else INF
c = C[p3] i f p3 < n else INF
i f a <= b and a <= c :

merged [i] = a
p1 += 1

e l i f b <= a and b <= c :
merged [i] = b
p2 += 1

else :
merged [i] = c
p3 += 1

i += 1
return merged

(b) (4 pts) Consider the Tri-Merge-Sort algorithm in which the given array is divided into three equal
length sub-arrays. Each sub-array is sorted recursively, and then, the three sorted sub-arrays are
combined using your linear time algorithm from part (a). Provide the recurrence relation describing
the running time of the Tri-Merge-Sort and apply the Master Theorem to obtain the time complexity
of this algorithm.

T (n) = 3T (n/3) +O(n) ⇒ a = 3, b = 3, d = 1⇒ a = bd

⇒ T (n) = Θ(n log n)

4

GT Username: Full Name:

4 Divide-and-Conquer: Binary Search [10 pts]

Given a sorted array A = [a1, a2, . . . , an] including all the integers in the range {1, 2, . . . , n−1} exactly once,
expect for one of them which appears twice. Design a divide and conquer algorithm to find the only repeated
element.

Example 1: repeated element = 3

A = [1, 2, 3, 3, 4, 5]

Example 2: repeated element = 1

A = [1, 1, 2, 3, 4, 5, 6, 7]

(a) (5 pts) Explain your algorithm in words, and justify its correctness.

Algorithm: We proceed in a binary search fashion: for interval [lo, hi], let mid ← ⌊ lo+hi
2 ⌋. Check

A[mid]−mid:

– If A[mid] −mid = 0, it means that the repeated element is in the right side (has not appeared
yet). So, set lo = mid+ 1 and repeat.

– If A[mid]−mid = −1, it means either this element is the repeated one or the repeated one is on
the left side (it has appeared earlier). So,

∗ if A[mid] = A[mid− 1] or lo = hi, return A[mid]

∗ otherwise, set hi = mid and repeat

Explanation: The array is sorted and contains the numbers 1, 2, . . . , n− 1. Therefore, A[i]− i must
be equal to either 0 or −1 for all indexes, where the former happens when the repeated element has
not appeared yet, and the latter happens after the appearance of the repeated element. (The repeated
element will be the first time we have A[i] ̸= i).
The binary search step is justified by those observations: if A[mid] = mid then all indexes i < mid
must satisfy A[i] = i, and we can safely iterate to the second half of the array, as the repeated element
must be there. If A[mid] = mid − 1 there is one checking step needed before iterating as we must
verify if the repeated element landed at indexes mid− 1,mid. If not, we iterate to the first half since
the repeated element must occurs before index mid in order for the shift in the value to occurs. Every
iteration is guarantee to contain an index t with the property A[t] = t− 1, so we are guarantee to end
while performing the first step which return the repeated element.

5

(b) (3 pts) Provide the pseudocode describing your algorithm.

Algorithm 1: FindRepeated

Input: A = {a1, a2, ..., an}
Result: the repeated element ai

1 lo← 0
2 hi← n

3 while (lo < hi) do
4 mid← ⌊(lo+ hi)/2⌋
5 if (A[mid]==mid) then
6 lo← mid+ 1
7 else if A[mid]==A[mid-1] then
8 return A[mid]
9 else

10 hi← mid
11 end

12 end

13 return A[lo]

Note: Other implementations, e.g., recursive approach is also accepted.

Python implementat ion
def f i nd r ep ea t ed (A) :

n = len (A)
l , r = 0 , n−1

while l < r :
m = (l+r)//2

i f A[m]−m == +1: # 0− indexed
l = m+1

e l i f A[m]==A[m+1] :
return A[m]

else :
r = m

return A[l]

(c) (2 pts) Analyze the running time of your algorithm using the Master Theorem.

T (n) = T (n/2) +O(1) ⇒ a = 1, b = 2, d = 0⇒ a = bd

⇒ T (n) = Θ(log n)

6

GT Username: Full Name:

5 Dynamic Programming: Maximum Paired Sum [10 pts]

Consider an array of n integer numbers A = [a1, a2, . . . , an]. Design an algorithm to find the maximum
Adjacent-Pair-Product-Sum, which is defined as the largest value that can be obtained by multiplying
adjacent elements in the array and then add them together. Each element can be paired with at most one
of its immediate neighbors, but it is also allowed to be left alone.

Example 1: A = [1, 2, 3, 1]
Maximum Adjacent-Pair-Product-Sum = 1 + (2× 3) + 1 = 8

Example 2: A = [2, 2, 1, 3, 2, 1, 2, 2, 1, 2]
Maximum Adjacent-Pair-Product-Sum = (2× 2) + 1 + (3× 2) + 1 + (2× 2) + 1 + 2 = 19.
But another Adjacent-Pair-Product-Sum that is not optimal is 2+(2×1)+(3×2)+1+(2×2)+1+2 = 18.

(a) (1 pt) Compute the largest Adjacent-Pair-Product-Sum of A = [1, 4, 3, 2, 3, 4, 2]

Maximum Adjacent-Pair-Product-Sum = 1 + (4× 3) + 2 + (3× 4) + 2 = 29

(b) (4 pts) Discuss the optimal substructure of the Adjacent-Pair-Product-Sum problem, and give the
recurrence relation including the base case(s).
You can define OPT [i] as the largest Adjacent-Pair-Product-Sum of the first i elements, a1, . . . , ai.

Define OPT [i] as the largest Adjacent-Pair-Product-Sum of array Ai = [a1, a2, . . . , ai]. Then, the
optimum solution of the current step can be constructed using the optimum solutions of the previous
steps. Accordingly, at step i, we have two options for using ai:

(1) We can treat it as an alone number, where in this case, the optimum solution at step i is equal
to OPT [i− 1] + ai, or

(2) We can pair the current element ai with the previous element ai−1, where the optimum solution
will obtain by adding their multiplication ai × ai−1 to the optimum solution obtained at step
OPT [i− 2].

The optimum solution at current step i (which is the largest Adjacent-Pair-Product-Sum of array
Ai = [a1, a2, . . . , ai]) is the maximum of these two values:

OPT [i] = max{OPT [i− 1] + ai, OPT [i− 2] + ai × ai−1}

where the base cases are OPT [0] = 0, OPT [1] = a1.

7

GT Username: Full Name:

(c) (3 pts) Give the pseudocode of a bottom-up or top-down implementation of the dynamic programming
algorithm using the recurrence relation from part (a).

Python implementat ion
def paired sum (A) :

n = len (A)
opt = [0] ∗ (n+1)
opt [1] = A[0]

for i in range (2 , n+1):
opt [i] = max(opt [i −1]+A[i −1] , opt [i −2]+A[i −1]∗A[i −2])

return opt [n]

(d) (2 pts) Analyze the time and space complexity of your algorithm.
Time: O(n), Space: O(n)
Since we only need the solution of the last two subproblems, the space complexity can be reduced to
O(1).

8

	Asymptotic Notations [12 pts]
	Master Theorem [10 pts]
	Solve the following recurrence relations using the Master Theorem and give the tightest bound in terms of . Also, state whether the computational cost is dominated at the leaves, the root or equally distributed at all levels of the corresponding recursion tree.
	 (4 pts) For the following divide-and-conquer program, give the recurrence relation describing the running time and apply the Master Theorem to calculate the running time.

	Divide-and-Conquer: Tri-Merge-Sort [8 pts]
	Divide-and-Conquer: Binary Search [10 pts]
	Dynamic Programming: Maximum Paired Sum [10 pts]

