CS 3510: Design and Analysis of Algorithms Georgia Tech

Exam 1

Instructor: Shahrokh Shahi Summer 2022

GT Username: Full Name:

Instructions:

Write your name and GT username on each page very clearly. Then, complete the exam.

This exam is closed-book, and collaboration is NOT permitted.

You are allowed to use one sheet of notes, i.e., both sides of a letter-sized paper, during the exam.
No calculator is required.

You have 80 minutes to complete this exam.

It is recommended to read all the questions before starting. Please read the questions carefully. Mis-
understanding the question is not a valid excuse for losing points.

If you find it necessary, make reasonable assumptions but make sure to state them clearly.
You can use the back of each sheet as scratch paper.

Write your solution is the space provided. In case you need more space, you can use back of the same
sheet, and make a notation on the front of the sheet.

10. The exam has 50 points in total.
Good luck!

Number | Problem Points | Grade
1 Asymptotic Notations 12
2 Master Theorem 10
3 Divide-and-Conquer: Tri-Merge-Sort 8
4 Divide-and-Conquer: Binary Search 10
) Dynamic Programming 10

GT Username: Full Name:

p—t

Asymptotic Notations [12 pts]

(a) (5 pts) For each pair of functions f and g, choose one of f € O(g),f € ©(g), f € Q(g) that best
describes their relative asymptotic growth. No justification is required.

— f=1log(n?), g = 1001og(n)
— f=n% g=(nlogn)®+ n?
~ f=pl000 g q5n
—f=2"g9=(5)"

— f=(Mm+3)3 g=100n%—-n

(b) (3 pts) Give the mathematical definition of f(n) € Q(g(n)) and provide an example.

(¢) (4 pts) Assume you have functions f and g, such that f(n) € O(g(n)). For the following statement,
tell whether it is true or false, and give a proof (if it is true) or a counterexample (if it is false).

| 1f g(n) € O(h(n)), then f(n) € O(h(n)).|

GT Username: Full Name:

2 Master Theorem [10 pts]

2.1 Solve the following recurrence relations using the Master Theorem and give
the tightest bound in terms of ©. Also, state whether the computational
cost is dominated at the leaves, the root or equally distributed at all levels
of the corresponding recursion tree.

(a) (3 pts) T(n) = 9T (n/3) + O(n?)

(b) (3 pts) T'(n) = 5T(n/4) + O(3n + 5)

2.2 (4 pts) For the following divide-and-conquer program, give the recurrence
relation describing the running time and apply the Master Theorem to
calculate the running time.

def func(n):
if n==0: stop

func(n/3)

func(n/3)

do_something in O(n)

GT Username: Full Name:

3 Divide-and-Conquer: Tri-Merge-Sort [8 pts]

We would like to build a more advanced version of the Merge-Sort algorithm in which at each step the array
will be divided into three sub-arrays. Answer the following questions:

(a) (4 pts) The merging step in the Merge-Sort algorithm (discussed in lectures) combines two sorted
sub-arrays in linear time. Now, suppose we have three sorted sub-arrays A, B, and C, each of length
n/3, and we want to merge them into a single sorted array S of length n containing all elements of
these three sub-arrays. Design an algorithm that can combine these three sorted sub-arrays in linear
time. Describe your algorithm in words or pseudocode.

(b) (4 pts) Consider the Tri-Merge-Sort algorithm in which the given array is divided into three equal
length sub-arrays. Each sub-array is sorted recursively, and then, the three sorted sub-arrays are
combined using your linear time algorithm from part (a). Provide the recurrence relation describing
the running time of the Tri-Merge-Sort and apply the Master Theorem to obtain the time complexity
of this algorithm.

GT Username: Full Name:

4 Divide-and-Conquer: Binary Search [10 pts]

Given a sorted array A = [a1, a9, ..., a,] including all the integers in the range {1,2,...,n— 1} exactly once,
expect for one of them which appears twice. Design a divide and conquer algorithm to find the only repeated
element.

Example 1: ’repeated element = 3‘

A=11,2,3,3,4,5]

Example 2: ’repeated element = 1 ‘

A=[1,1,2,3,4,5,6,7]

(a) (5 pts) Explain your algorithm in words, and justify its correctness.

GT Username: Full Name:

(b) (3 pts) Provide the pseudocode describing your algorithm.

(c) (2 pts) Analyze the running time of your algorithm using the Master Theorem.

GT Username: Full Name:

5 Dynamic Programming: Maximum Paired Sum [10 pts]

Consider an array of n integer numbers A = [a1,aq,...,a,]. Design an algorithm to find the maximum
Adjacent-Pair-Product-Sum, which is defined as the largest value that can be obtained by multiplying
adjacent elements in the array and then add them together. Each element can be paired with at most one
of its immediate neighbors, but it is also allowed to be left alone.

Example 1: A =11,2,3,1]
Maximum Adjacent-Pair-Product-Sum =1+ (2x3)+1=8

Example 2: A=12,2,1,3,2,1,2,2,1,2]
Maximum Adjacent-Pair-Product-Sum = (2x2)+ 1+ (3x2)+1+(2x2)+14+2=19.
But another Adjacent-Pair-Product-Sum that is not optimal is 2+ (2x 1)+ (3x2)+1+(2x2)+1+2 = 18.

(a) (1 pt) Compute the largest Adjacent-Pair-Product-Sum of A = [1,4,3,2,3,4,2]

(b) (4 pts) Discuss the optimal substructure of the Adjacent-Pair-Product-Sum problem, and give the
recurrence relation including the base case(s).
You can define OPTV[i] as the largest Adjacent-Pair-Product-Sum of the first i elements, aq,...,aq;.

GT Username: Full Name:

(¢) (3 pts) Give the pseudocode of a bottom-up or top-down implementation of the dynamic programming
algorithm using the recurrence relation from part (a).

(d) (2 pts) Analyze the time and space complexity of your algorithm.

	Asymptotic Notations [12 pts]
	Master Theorem [10 pts]
	Solve the following recurrence relations using the Master Theorem and give the tightest bound in terms of . Also, state whether the computational cost is dominated at the leaves, the root or equally distributed at all levels of the corresponding recursion tree.
	 (4 pts) For the following divide-and-conquer program, give the recurrence relation describing the running time and apply the Master Theorem to calculate the running time.

	Divide-and-Conquer: Tri-Merge-Sort [8 pts]
	Divide-and-Conquer: Binary Search [10 pts]
	Dynamic Programming: Maximum Paired Sum [10 pts]

